Antwoord:
Er zijn 2 van zulke paren:
Uitleg:
Om de getallen te vinden moeten we de vergelijking oplossen:
Nu zijn de oplossingen:
Het product van twee opeenvolgende even gehele getallen is 24. Zoek de twee gehele getallen. Antwoord eerst in de vorm van gepaarde punten met de laagste van de twee gehele getallen. Antwoord?
De twee opeenvolgende even gehele getallen: (4,6) of (-6, -4) Laten, kleur (rood) (n en n-2 zijn de twee opeenvolgende even gehele getallen, waar kleur (rood) (n inZZ Product van n en n-2 is 24 ie n (n-2) = 24 => n ^ 2-2n-24 = 0 Nu, [(-6) + 4 = -2 en (-6) xx4 = -24]: .n ^ 2-6n + 4n-24 = 0: .n (n-6) +4 (n-6) = 0:. (N-6) (n + 4) = 0: .n-6 = 0 of n + 4 = 0 ... tot [n inZZ] => kleur (rood) (n = 6 of n = -4 (i) kleur (rood) (n = 6) => kleur (rood) (n-2) = 6-2 = kleur (rood) (4) Dus, de twee opeenvolgende even gehele getallen: (4,6) (ii)) kleur (rood) (n = -4) => kleur (rood) (n-2) = -4-2 = kleur (rood) (- 6) Dus, de
Het product van twee opeenvolgende gehele getallen is 47 meer dan het volgende opeenvolgende gehele getal. Wat zijn de twee gehele getallen?
-7 en -6 OF 7 en 8 Laat de gehele getallen x, x + 1 en x + 2 zijn. Dan x (x + 1) - 47 = x + 2 Oplossen voor x: x ^ 2 + x - 47 = x + 2 x ^ 2 - 49 = 0 (x + 7) (x - 7) = 0 x = -7 en 7 Terugkijkend werken beide resultaten, dus de twee gehele getallen zijn -7 en -6 of 7 en 8. Hopelijk is dit helpt!
Het product van twee opeenvolgende oneven gehele getallen is 29 minder dan 8 keer hun som. Zoek de twee gehele getallen. Antwoord eerst in de vorm van gepaarde punten met de laagste van de twee gehele getallen?
(13, 15) of (1, 3) Laat x en x + 2 de oneven opeenvolgende getallen zijn, dan hebben we vanaf de vraag (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 of 1 Nu, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. De cijfers zijn (13, 15). CASE II: x = 1:. x + 2 = 1+ 2 = 3:. De cijfers zijn (1, 3). Vandaar dat er hier twee gevallen worden gevormd; het paar getallen kan zowel (13, 15) als (1, 3) zijn.