Antwoord:
Hoek tussen vectoren is ongeveer
Uitleg:
Ik heb een afbeelding toegevoegd die kan helpen
Ook deze link zal helpen
Eigenlijk is de inverse cosinus ongeveer
Triangle XYZ is gelijkbenig. De basishoeken, hoek X en hoek Y, zijn vier keer de maat van de hoekhoek, hoek Z. Wat is de maat van hoek X?
Stel twee vergelijkingen in met twee onbekenden. Je zult X en Y = 30 graden, Z = 120 graden vinden. Je weet dat X = Y, dat betekent dat je Y door X kunt vervangen of andersom. Je kunt twee vergelijkingen berekenen: aangezien er in een driehoek 180 graden zijn, betekent dit: 1: X + Y + Z = 180 Vervang Y door X: 1: X + X + Z = 180 1: 2X + Z = 180 We kan ook een andere vergelijking maken op basis van die hoek Z is 4 keer groter dan hoek X: 2: Z = 4X Laten we nu vergelijking 2 in vergelijking 1 plaatsen door Z te vervangen door 4x: 2X + 4X = 180 6X = 180 X = 30 Invoegen deze waarde van X in de eerste of de tweede vergelijking
Hoek A en B zijn complementair. De maat van hoek B is drie keer de maat van hoek A. Wat is de maat van hoek A en B?
A = 22.5 en B = 67.5 Als A en B complementair zijn, A + B = 90 ........... Vergelijking 1 De maat van hoek B is driemaal de maat van hoek AB = 3A ... ........... Vergelijking 2 Vervanging van de waarde van B uit vergelijking 2 in vergelijking 1, we krijgen A + 3A = 90 4A = 90 en daarom A = 22,5 Deze waarde van A in een van de vergelijkingen zetten en oplossen voor B, we krijgen B = 67,5 dus A = 22,5 en B = 67,5
Twee ruiten hebben zijden met een lengte van 4. Als een ruit een hoek heeft met een hoek van pi / 12 en de andere een hoek heeft met een hoek van (5pi) / 12, wat is het verschil tussen de gebieden van de ruiten?
Verschil in Oppervlakte = 11.31372 "" vierkante eenheden Om het gebied van een ruit te berekenen Gebruik de formule Gebied = s ^ 2 * sin theta "" waar s = zijkant van de ruit en theta = hoek tussen twee zijden Bereken het gebied van ruit 1. Area = 4 * 4 * sin ((5pi) / 12) = 16 * sin 75^@=15.45482 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~====================== ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~