Antwoord:
Uitleg:
De taak is in de vorm
We moeten de kettingregel gebruiken.
Kettingregel:
Wij hebben
en
Nu moeten we ze afleiden:
Schrijf de expressie zo "mooi" mogelijk
en we krijgen
we moeten u berekenen '
Het enige dat overblijft is nu om alles wat we hebben in de formule in te vullen
Antwoord:
Om de definitie te gebruiken, zie de uitleg hieronder.
Uitleg:
# = lim_ (hrarr0) (sqrt (9- (x + h)) - sqrt (9-x)) / h # (Het formulier#0/0# )
Rationaliseer de teller.
# = lim_ (hrarr0) ((sqrt (9- (x + h)) - sqrt (9-x))) / h * ((sqrt (9- (x + h)) + sqrt (9-x))) / ((sqrt (9- (x + h)) + sqrt (9-x))) #
# = lim_ (hrarr0) (9- (x + h) - (9-x)) / (h (sqrt (9- (x + h)) + sqrt (9-x))) #
# = lim_ (hrarr0) (- h) / (h (sqrt (9- (x + h)) + sqrt (9-x))) #
# = lim_ (hrarr0) (- 1) / ((sqrt (9- (x + h)) + sqrt (9-x)) #
# = (-1) / (sqrt (9-x) + sqrt (9-x) #
# = (-1) / (2sqrt (9-x)) #
De basis van een driehoek van een bepaald gebied varieert omgekeerd als de hoogte. Een driehoek heeft een basis van 18 cm en een hoogte van 10 cm. Hoe vind je de hoogte van een driehoek van hetzelfde oppervlak en met een basis van 15 cm?
Hoogte = 12 cm Het oppervlak van een driehoek kan worden bepaald met het vergelijkingsgebied = 1/2 * basis * hoogte Zoek het gebied van de eerste driehoek door de metingen van de driehoek in de vergelijking te plaatsen. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 Laat de hoogte van de tweede driehoek = x. Dus de gebiedsvergelijking voor de tweede driehoek = 1/2 * 15 * x Aangezien de gebieden gelijk zijn, 90 = 1/2 * 15 * x Tijden beide zijden met 2. 180 = 15x x = 12
Een veer met een constante van 9 (kg) / s ^ 2 ligt op de grond met een uiteinde bevestigd aan een muur. Een voorwerp met een massa van 2 kg en een snelheid van 7 m / s botst met en drukt de veer samen tot deze niet meer beweegt. Hoeveel zal de lente comprimeren?
Delta x = 7 / 3sqrt2 "" m E_k = 1/2 * m * v ^ 2 "De kinetische energie van het object" E_p = 1/2 * k * Delta x ^ 2 "De potentiële energie van samengedrukte lente" E_k = E_p "Instandhouding van energie" annuleren (1/2) * m * v ^ 2 = annuleren (1/2) * k * Delta x ^ 2 m * v ^ 2 = k * Delta x ^ 2 2 * 7 ^ 2 = 9 * Delta x ^ 2 Delta x = sqrt (2 * 7 ^ 2/9) Delta x = 7 / 3sqrt2 "" m
Hoe vind je f '(x) met behulp van de definitie van een afgeleide f (x) = sqrt (x-3)?
Profiteer gewoon van de a ^ 2-b ^ 2 = (ab) (a + b) Antwoord is: f '(x) = 1 / (2sqrt (x-3)) f (x) = sqrt (x-3 ) f '(x) = lim_ (h-> 0) (sqrt (x + h-3) -sqrt (x-3)) / h = = lim_ (h-> 0) ((sqrt (x + h- 3) -sqrt (x-3)) * (sqrt (x + h-3) + sqrt (x-3))) / (h (sqrt (x + h-3) + sqrt (x-3))) = = lim_ (h-> 0) (sqrt (x + h-3) ^ 2-sqrt (x-3) ^ 2) / (h (sqrt (x + h-3) + sqrt (x-3)) ) = = lim_ (h-> 0) (x + h-3-x-3) / (h (sqrt (x + h-3) + sqrt (x-3))) = = lim_ (h-> 0 ) h / (h (sqrt (x + h-3) + sqrt (x-3))) = = lim_ (h-> 0) cancel (h) / (cancel (h) (sqrt (x + h-3) ) + sqrt (x-3))) = = lim_ (h-> 0) 1 / ((sqrt (x