Het aantal positieve integrale oplossingen van de in-vergelijking (x ^ 2 (3x-4) ^ 3 (x-2) ^ 4) / ((x-5) ^ 5 (2x-7) ^ 6) <= 0 is?

Het aantal positieve integrale oplossingen van de in-vergelijking (x ^ 2 (3x-4) ^ 3 (x-2) ^ 4) / ((x-5) ^ 5 (2x-7) ^ 6) <= 0 is?
Anonim

Antwoord:

De oplossing is #x in x in 4 / 3,2 #

Uitleg:

Laat #f (x) = (x ^ 2 (3x-4) ^ 3 (x-2) ^ 4) / ((x-5) ^ 5 (2x-7) ^ 6) #

Dat zijn ze #2# verticale asymptoten

Laten we het borddiagram bouwen

#color (wit) (aaa) ##X##color (wit) (aaa) ## -Oo ##color (wit) (aaaa) ##0##color (wit) (AAAAA) ##4/3##color (wit) (aaaa) ##2##color (wit) (aaaa) ##7/2##color (wit) (AAAAA) ##5##color (wit) (aaaa) ## + Oo #

#color (wit) (aaa) ## X ^ 2 ##color (wit) (aaaaaa) ##+##color (wit) (aa) ##0##color (wit) (a) ##+##color (wit) (aaa) ##+##color (wit) (aa) ##+##color (wit) (aaaa) ##+##color (wit) (aaaa) ##+#

#kleur wit)()## (3x-4) ^ 3 ##color (wit) (aaaa) ##-##color (wit) (aaa) ##-##color (wit) (a) ##0##color (wit) (a) ##+##color (wit) (aa) ##+##color (wit) (aaaa) ##+##color (wit) (aaaa) ##+#

#kleur wit)()## (X-2) ^ 4 ##color (wit) (AAAAA) ##+##color (wit) (aaa) ##+##color (wit) (aaa) ##+##color (wit) (a) ##0##color (wit) (a) ##+##color (wit) (aaa) ##+##color (wit) (aaaa) ##+#

#kleur wit)()## (2x-7) ^ 6 ##color (wit) (aaaa) ##+##color (wit) (aaa) ##+##color (wit) (aaa) ##+##color (wit) (a) ####kleur (wit) (aa)##+##color (wit) (a) ##||##color (wit) (a) ##+##color (wit) (aaaa) ##+#

#kleur wit)()## (X-5) ^ 5 ##color (wit) (AAAAA) ##-##color (wit) (aaa) ##-##color (wit) (aa) ##-##color (wit) (a) ####kleur (wit) (aaa)##+##color (wit) (a) ####kleur (wit) (a)##+##color (wit) (aa) ##||##color (wit) (aa) ##+#

#kleur wit)()##f (x) ##color (wit) (aaaaaaaa) ##+##color (wit) (aaa) ##+##color (wit) (aa) ##-##color (wit) (a) ####kleur (wit) (aaa)##+##color (wit) (a) ##||##color (wit) (a) ##+##color (wit) (aa) ##||##color (wit) (aa) ##+#

daarom

#f (x) <= 0 # wanneer #x in 4 / 3,2 #

grafiek {(x ^ 2 (3x-4) ^ 3 (x-2) ^ 4) / ((x-5) ^ 5 (2x-7) ^ 6) -36.53, 36.56, -18.27, 18.25}