Wanneer een gegevensset enkele zeer extreme gevallen bevat.
Voorbeeld: we hebben een dataset van 1000 waarin de meeste waarden rond de 1000-markering zweven. Laten we zeggen dat het gemiddelde en de mediaan beide 1000 zijn. Nu voegen we er één 'miljonair' aan toe. Het gemiddelde zal dramatisch stijgen tot bijna 2000, terwijl de mediaan niet echt zal veranderen, omdat het de waarde van geval 501 zal zijn in plaats van tussenin van geval 500 en geval 501 (gevallen gerangschikt in volgorde van waarde)
Sukhdev had een zoon en een dochter. Hij besloot zijn eigendom onder zijn kinderen te verdelen, 2/5 van zijn bezittingen aan zijn zoon en 4/10 aan zijn dochter en rustte in een liefdadigheidsinstelling. Wiens aandeel was meer een zoon of een dochter? Wat vind je van zijn beslissing?
Ze ontvingen hetzelfde bedrag. 2/5 = 4/10 rarr Je kunt de teller van de eerste breuken (2/5) en de noemer met 2 vermenigvuldigen om 4/10 te krijgen, een equivalent breuk. 2/5 in decimale vorm is 0,4, hetzelfde als 4/10. 2/5 procent is 40%, hetzelfde als 4/10.
Het gemiddelde is de meest gebruikte maat voor het centrum, maar er zijn momenten waarop het wordt aanbevolen om de mediaan voor gegevensweergave en -analyse te gebruiken. Wanneer kan het passend zijn om de mediaan te gebruiken in plaats van het gemiddelde?
Wanneer er enkele extreme waarden in uw gegevensset staan. Voorbeeld: u heeft een dataset van 1000 cases met waarden die niet te ver uit elkaar liggen. Hun gemiddelde is 100, net als hun mediaan. Nu vervang je slechts één case door een case die de waarde 100000 heeft (alleen al om extreem te zijn). Het gemiddelde zal dramatisch stijgen (tot bijna 200), terwijl de mediaan niet zal worden beïnvloed. Berekening: 1000 gevallen, gemiddelde = 100, som van waarden = 100000 Lose one 100, add 100000, som of values = 199900, mean = 199.9 Median (= case 500 + 501) / 2 blijft hetzelfde.
Product van een positief aantal van twee cijfers en het cijfer in de plaats van de eenheid is 189. Als het cijfer in de plaats van de tien tweemaal zo groot is als dat in de plaats van de eenheid, wat is dan het cijfer in de plaats van het apparaat?
3. Merk op dat de tweecijferige nummers. die aan de tweede voorwaarde voldoen (cond.) zijn, 21,42,63,84. Hiervan, sinds 63xx3 = 189, concluderen we dat het tweecijferige nummer. is 63 en het gewenste cijfer in de eenheid is 3. Om het probleem methodisch op te lossen, stel dat het cijfer van de plaats van tien x is, en dat van eenheden, y. Dit betekent dat het tweecijferige nummer. is 10x + y. "De" 1 ^ (st) "cond." RArr (10x + y) y = 189. "De" 2 ^ (nd) "cond." RArr x = 2y. Sub.ing x = 2y in (10x + y) y = 189, {10 (2y) + y} = 189. :. 21j ^ 2 = 189 rArr y ^ 2 = 189/21 = 9 rArr y = + - 3