Antwoord:
Uitleg:
De algemene vertex-vorm voor een parabool met vertex op
Voor de top
Omdat deze vergelijking voor het punt geldt
en de vergelijking is
Wat is de vergelijking van de parabool met een hoekpunt op (-1, 16) en passeerpunt (3,32)?
Y-16 = (x + 1) ^ 2 Een parabool met vertex (h, k) heeft een vergelijking van de vorm: y = h = a (x-k) ^ 2. Dus deze parabool is y-16 = a (x_1) ^ 2. Gebruikmakend van het feit dat wanneer x = -1, we y = 32 hebben die we kunnen vinden. 32 - 16 = a (3 + 1) ^ 2 So a = 1 #
Wat is de vergelijking van de parabool met een hoekpunt op (12, 4) en passeerpunt (7,54)?
Y = 2 (x-12) ^ 2 + 4 U kunt vertex-vorm, y = a (x-h) ^ 2 + k gebruiken om de vergelijking op te lossen. De vertex van de parabool is (h, k) en het gegeven punt is (x, y), dus h = 12, k = 4, x = 7 en y = 54. Sluit het vervolgens aan om 54 = a (7-12) ^ 2 + 4 te krijgen. Vereenvoudig eerst in de parabool om 54 = a (-5) ^ 2 + 4 te krijgen, en doe dan de exponent om 54 = 25a-4 te krijgen. Trek 4 van beide kanten af om de variabele te isoleren en verkrijg 50 = 25a. Verdeel beide zijden met 25 om a = 2 te krijgen, en stop deze terug in de vertex-vorm om de vergelijking y = 2 (x-12) ^ 2 + 4 te krijgen.
Wat is de vergelijking van de parabool met een hoekpunt op (-1, 6) en passeerpunt (3,22)?
Vergelijking van de parabool is y = x ^ 2 + 2 * x + 7 We gebruiken hier de standaardvergelijking van Parabool y = a (x-h) ^ 2 + k Waar h e k de coördinaten van Vertex zijn. Hier is h = -1 en k = 6 (gegeven) Dus de vergelijking van de Parabool wordt y = a (x + 1) ^ 2 + 6. Nu passeert de parabool het punt (3,22). Dit punt voldoet dus aan de vergelijking. Dan 22 = a (3 + 1) ^ 2 + 6 of a * 16 = 22-6 of a = 1 Dus de vergelijking van de parabool is y = 1 * (x + 1) ^ 2 + 6 of y = x ^ 2 + 2 * x + 7 [Antwoord] grafiek {x ^ 2 + 2x + 7 [-80, 80, -40, 40]}