Antwoord:
Uitleg:
schrift
# n / (n + 1) + (2 (n + 1)) / n = 41/12 #
Merk op dat als we breuken optellen we ze eerst een gemeenschappelijke noemer geven. In dit geval verwachten we natuurlijk dat die noemer dat wel is
Vandaar dat we beide verwachten
Proberen
#3/4+8/3 = (9+32)/12 = 41/12' '# zoals gevraagd.
Som van de teller en de noemer van een breuk is 3 minder dan tweemaal de noemer. Als de teller en de noemer beide met 1 verminderen, wordt de teller de helft van de noemer. Bepaal de breuk?
4/7 Stel dat de breuk a / b is, teller a, noemer b. Som van de teller en de noemer van een breuk is 3 minder dan tweemaal de noemer a + b = 2b-3 Als de teller en de noemer beide met 1 verminderen, wordt de teller de helft van de noemer. a-1 = 1/2 (b-1) Nu doen we de algebra. We beginnen met de vergelijking die we net hebben geschreven. 2 a- 2 = b-1 b = 2a-1 Uit de eerste vergelijking, a + b = 2b-3 a = b-3 We kunnen hier b = 2a-1 in plaatsen. a = 2a - 1 - 3 -a = -4 a = 4 b = 2a-1 = 2 (4) -1 = 7 Breuk is a / b = 4/7 Controle: * Som van de teller (4) en de noemer (7) van een breuk is 3 minder dan tweemaal de noemer * (4) (7)
De som van de teller en de noemer van een breuk is 12. Als de noemer met 3 wordt verhoogd, wordt de breuk 1/2. Wat is de breuk?
Ik kreeg 5/7 Laten we onze breuk x / y noemen, we weten dat: x + y = 12 en x / (y + 3) = 1/2 van de seconde: x = 1/2 (y + 3) naar de eerste: 1/2 (y + 3) + y = 12 y + 3 + 2y = 24 3y = 21 y = 21/3 = 7 en dus: x = 12-7 = 5
Wat is een reëel getal, een geheel getal, een geheel getal, een rationeel getal en een irrationeel getal?
Uitleg Hieronder Rationele getallen zijn er in 3 verschillende vormen; gehele getallen, breuken en terminerende of terugkerende decimalen, zoals 1/3. Irrationele nummers zijn behoorlijk 'rommelig'. Ze kunnen niet worden geschreven als breuken, het zijn eindeloze, niet-herhalende decimalen. Een voorbeeld hiervan is de waarde van π. Een geheel getal kan een geheel getal worden genoemd en is een positief of een negatief getal, of nul. Een voorbeeld hiervan is 0, 1 en -365.