Antwoord:
Uitleg:
Als je dit in goniometrische / exponentiële vorm schrijft, heb je dat
Ik denk het niet
De positievector van A heeft de Cartesiaanse coördinaten (20,30,50). De positievector van B heeft de Cartesiaanse coördinaten (10,40,90). Wat zijn de coördinaten van de positievector van A + B?
<30, 70, 140> When adding vectors, simply add the coordinates. A+B=<20, 30, 50> + <10, 40, 90> =<20+10, 30+40, 50+90> = <30, 70, 140>
Wat is de cartesiaanse vorm van (-4, (-3pi) / 4)?
(2sqrt2,2sqrt2) (r, theta) tot (x, y) => (rcostheta, rsintheta) x = rcostheta = -4cos (- (3pi) / 4) = 2sqrt2 y = rsintheta = -4sin (- (3pi) / 4) = 2sqrt2 (-4, - (3pi) / 4) -> (2sqrt2,2sqrt2)
Wat is de cartesiaanse vorm van (33, (- pi) / 8)?
((33sqrt (2 + sqrt2)) / 2, (33sqrt (2-sqrt2)) / 2) ~~ (30.5, -12.6) (r, theta) -> (x, y); (x, y ) - = (rcostheta, rsintheta) r = 33 theta = -pi / 8 (x, y) = (33cos (-pi / 8), 33sin (-pi / 8)) = ((33sqrt (2 + sqrt2)) /2,(33sqrt(2-sqrt2))/2))