P en Q zijn de wortels van 3x2-12x + 6. Vind 1 / p2 - 1 / q * 2?

P en Q zijn de wortels van 3x2-12x + 6. Vind 1 / p2 - 1 / q * 2?
Anonim

Antwoord:

# 1 / p ^ 2-1 / q ^ 2 = 2sqrt2 #…..# (p <q) #.

hint: # (X-y) ^ 2 = x ^ 2 + y ^ 2-2xy = x ^ 2 + 2xy + y ^ 2-4xy #

# => (X-y) ^ 2 = (x + y) ^ 2-4xy #

gebruik alstublieft '^' in plaats van ' * '. # i.e.x ^ 2 tot #x ^ 2 en niet x * 2

Uitleg:

Ik denk dat je kwadratische vergelijking dat is

# 3x ^ 2-12x + 6 = 0 #.

Vergelijken met # Ax ^ 2 + bx + c = 0 #,we krijgen

# a = 3, b = -12 en c = 6 #

Als de wortels van deze equn. zijn #p en q #, dan

# p + q = -b / a en pq = c / a #

# i.e. p + q = - (- 12) / 3 = 4 en pq = 6/3 = 2 #

Nu, # 1 / p ^ 2-1 / q ^ 2 = (q ^ 2-p ^ 2) / (2q p ^ ^ 2) = ((q + p) (q-p)) / (pq) ^ 2 #,….# (p <q) #

# => 1 / p ^ 2-1 / q ^ 2 = ((4) sqrt ((q-p) ^ 2)) / 2 ^ 2 = sqrt ((q-p) ^ 2 #

# => 1 / p ^ 2-1 / q ^ 2 = sqrt ((q + p) ^ 2-4pq) = sqrt (4 ^ 2-4 (2) #

# => 1 / p ^ 2-1 / q ^ 2 = sqrt (16-8) = sqrt8 = 2sqrt2 #….# (p <q) #

# 3x ^ 2-12x + 6 = 0 #

# => x ^ 2 - 4x + 2 = 0 #

Wortels, #X = (- b + -sqrt (b 2-4ac ^)) / (2a) #

# X = (4 + -sqrt (16-4 * 1 * 2)) / (2) #

# x = (4 + -sqrt (8)) / (2) = (4 + -2sqrt (2)) / (2) #

# X = (2 + -2sqrt (2)) #

Vinden, # 1 / p ^ 2 - 1 / q ^ 2 #

# => (1 / p + 1 / q) (1 / p-1 / q) #

# => (1 / (2 + 2sqrt (2)) + 1 / (2-2sqrt (2))) (1 / (2 + 2sqrt (2)) - 1 / (2-2sqrt (2))) #

# => (((2-2sqrt (2)) + (2 + 2sqrt (2))) / ((2-2sqrt (2)) (2 + 2sqrt (2)))) (((2-2sqrt (2)) - (2 + 2sqrt (2))) / ((2-2sqrt (2)) (2 + 2sqrt (2)))) #

# => (((2 + 2)) / ((2-2sqrt (2)) (2 + 2sqrt (2)))) (((- 2sqrt (2) -2sqrt (2))) / ((2 -2sqrt (2)) (2 + 2sqrt (2)))) #

# => ((4 (-4sqrt2)) / ((8/4)) ^ 2) #

# => ((4 (-4sqrt2)) / (- 4) ^ 2) #

# => (- sqrt2) #