Laat
Schrijf de algemene term op uit de binomiale uitdrukking. Laat deze term de zijn r + 1 de termijn. Vereenvoudig nu deze algemene term. Als deze algemene term een constante term is, mag deze de variabele niet bevatten X.
Laten we de algemene term van de bovenstaande binomiaal schrijven.
vereenvoudigen, we krijgen,
Nu voor deze term de constante term is,
daarom
=> 3-r = 0
=> r = 3
Dus de vierde term in de uitbreiding is de constante term. Door r = 3 in de algemene term te plaatsen, krijgen we de waarde van de constante term.
Hoe gebruik je de binomiale stelling om uit te breiden (x + 1) ^ 4?
X ^ 4 + 4x ^ 3 + 6x ^ 2 + 4x + 1 De binomiale stelling zegt: (a + b) ^ 4 = a ^ 4 + 4a ^ 3b + 6a ^ 2b ^ 2 + 4ab ^ 3 + b ^ 4 so hier, a = x en b = 1 We krijgen: (x + 1) ^ 4 = x ^ 4 + 4x ^ 3 (1) + 6x ^ 2 (1) ^ 2 + 4x (1) ^ 3 + (1) ^ 4 (x + 1) ^ 4 = x ^ 4 + 4x ^ 3 + 6x ^ 2 + 4x + 1
Gebruik de binomiale stelling om uit te breiden (x + 7) ^ 4 en het resultaat in vereenvoudigde vorm uit te drukken?
2401 + 1372x + 294x ^ 2 + 28x ^ 3 + x ^ 4 Met binomiale stelling kunnen we (a + bx) ^ c uitdrukken als een uitvergrote set van x-termen: (a + bx) ^ c = sum_ (n = 0) ^ c (c!) / (n! (cn)!) a ^ (cn) (bx) ^ n Hier hebben we (7 + x) ^ 4 Dus om uit te breiden doen we dat: (4!) / (0 ! (4-0)!) ^ 7 (4-0) x ^ + 0 (4!) / (1! (4-1)!) ^ 7 (4-1) x ^ 1 + (4!) / (2! (4-2)!) ^ 7 (4-2) x ^ 2 + (4!) / (3! (4-3)!) ^ 7 (4-3) x ^ 3 + (4! ) / (4! (4-4)!) 7 ^ (4-4) x ^ 4 (4!) / (0! (4-0)!) 7 ^ 4x ^ 0 + (4!) / (1 ! (4-1)!) ^ 7 ^ 3 x 1 + (4!) / (2! (4-2)!) 7 ^ ^ 2 + 2x (4!) / (3! (4-3)!) 7x ^ 3 + (4!) / (4! (4-4)!) 7 ^ 0x ^ 4 (4!) / (0! 4!) 7 ^ 4 +
Hoe gebruik je de binomiale stelling om uit te breiden (x-5) ^ 5?
(-5 + x) ^ 5 = -3125 + 3125x -1250x ^ 2 + 250x ^ 3-25x ^ 4 + x ^ 5 (a + bx) ^ n = sum_ (r = 0) ^ n ((n), (r)) a ^ (nr) (bx) ^ r = sum_ (r = 0) ^ n (n!) / (r! (nr)!) a ^ (nr) (bx) ^ r (-5+ x) ^ 5 = sum_ (r = 0) ^ 5 (5!) / (r! (5-r)!) (- 5) ^ (5-r) x ^ r (-5 + x) ^ 5 = (5!) / (0 (5-0)!) (- 5) ^ (5-0) x ^ 0 + (5!) / (1 (5-1)!) (- 5) ^ ( 5-1) x ^ 1 + (5) / (2 (5-2!))? (-? 5) ^ (2/5) x ^ 2 + (5) / (3 (5-3) !) (- 5) ^ (3/5) x ^ 3 + (5) / (4 (5-4!)) (-? 5) ^ (4/5) x ^ 4 + (5) / (5! (5-5)!) (- 5) ^ (5-5) x ^ 5 (-5 + x) ^ 5 = (5!) / (0! 5!) (- 5) ^ 5 + (5!) / (1 4!) (- 5) ^ 4x + (5!) / (2 3!) (- 5) ^ 3x ^ 2 + (5!) / ((3 2!) - 5) ^