Gebruik de eerste beginselen om de gradiënt van y = tanh (x) te vinden?

Gebruik de eerste beginselen om de gradiënt van y = tanh (x) te vinden?
Anonim

Gegeven # Y = f (x) #, #f '(x) = lim_ (hto0) (f (x + h) -f (x)) / h #

#f '(x) = lim_ (hto0) (tanh (x + h) -tan (x)) / h #

#f '(x) = lim_ (hto0) ((tanh (x) + tanh (h)) / (1 + tanh (x) tanh (h)) - tan (x)) / h #

#f '(x) = lim_ (hto0) ((tanh (x) + tanh (h)) / (1 + tanh (x) tanh (h)) - (tanh (x) + tanh (h) ^ 2 tanh (x)) / (1 + tanh (x) tanh (h))) / h #

#f '(x) = lim_ (hto0) ((tanh (x) + tanh (h) -tanh (x) -tanh (h) ^ 2 tanh (x)) / (1 + tanh (x) tanh (h))) / h #

#f '(x) = lim_ (hto0) (tanh (x) + tanh (h) -tanh (x) -tanh (h) ^ 2 tanh (x)) / (h (1 + tanh (x) tanh (h))) #

#f '(x) = lim_ (hto0) (tanh (h) -tanh (h) ^ 2 tanh (x)) / (h (1 + tanh (x) tanh (h))) #

#f '(x) = lim_ (hto0) (tanh (h) (1-tanh 2 ^ (x))) / (h (1 + tanh (x) tanh (h))) #

#f '(x) = lim_ (hto0) (tanh (h) sech 2 ^ (x)) / (h (1 + tanh (x) tanh (h))) #

#f '(x) = lim_ (hto0) (sinh (h) sech 2 ^ (x)) / (hcosh (h) (1 + tanh (x) tanh (h))) #

#f '(x) = lim_ (hto0) sinh (h) / h * lim_ (hto0) sech 2 ^ (x) / (cosh (h) (1 + tanh (x) tanh (h))) #

#f '(x) = 1 * ^ 2 sech (x) / (cosh (0) (1 + tanh (x) tanh (0))) #

#f '(x) = 1 * ^ 2 sech (x) / (1 (1 + 0)) #

#f '(x) = sech 2 ^ (x) #