Antwoord:
Uitleg:
Een kwadratische vergelijking met wortels
Vandaar een kwadratische vergelijking met wortels
=
=
=
en als
De grafiek van een kwadratische functie heeft x-onderschept -2 en 7/2, hoe schrijf je een kwadratische vergelijking die deze wortels heeft?
Zoek f (x) = ax ^ 2 + bx + c = 0 met de 2 echte wortels: x1 = -2 en x2 = 7/2. Gegeven 2 echte wortels c1 / a1 en c2 / a2 van een kwadratische vergelijking ax ^ 2 + bx + c = 0, zijn er 3 relaties: a1a2 = a c1c2 = c a1c2 + a2c1 = -b (Diagonale som). In dit voorbeeld zijn de 2 echte wortels: c1 / a1 = -2/1 en c2 / a2 = 7/2. a = 12 = 2 c = -27 = -14 -b = a1c2 + a2c1 = -22 + 17 = -4 + 7 = 3. De kwadratische vergelijking is: Antwoord: 2x ^ 2 - 3x - 14 = 0 (1) Controle: vind de 2 echte wortels van (1) door de nieuwe AC-methode. Geconverteerde vergelijking: x ^ 2 - 3x - 28 = 0 (2). Los vergelijking (2) op. Wortels hebben verschill
Een veer met een constante van 9 (kg) / s ^ 2 ligt op de grond met een uiteinde bevestigd aan een muur. Een voorwerp met een massa van 2 kg en een snelheid van 7 m / s botst met en drukt de veer samen tot deze niet meer beweegt. Hoeveel zal de lente comprimeren?
Delta x = 7 / 3sqrt2 "" m E_k = 1/2 * m * v ^ 2 "De kinetische energie van het object" E_p = 1/2 * k * Delta x ^ 2 "De potentiële energie van samengedrukte lente" E_k = E_p "Instandhouding van energie" annuleren (1/2) * m * v ^ 2 = annuleren (1/2) * k * Delta x ^ 2 m * v ^ 2 = k * Delta x ^ 2 2 * 7 ^ 2 = 9 * Delta x ^ 2 Delta x = sqrt (2 * 7 ^ 2/9) Delta x = 7 / 3sqrt2 "" m
Een veer met een constante van 4 (kg) / s ^ 2 ligt op de grond met een uiteinde bevestigd aan een muur. Een object met een massa van 2 kg en een snelheid van 3 m / s botst met en comprimeert de veer totdat deze niet meer beweegt. Hoeveel zal de lente comprimeren?
De veer zal 1,5 m comprimeren. Je kunt dit berekenen aan de hand van Hooke's wet: F = -kx F is de kracht uitgeoefend op de veer, k is de veerconstante en x is de afstand die de veer comprimeert. Je probeert x te vinden. Je moet k weten (je hebt dit al) en F. Je kunt F berekenen met behulp van F = ma, waarbij m de massa is en a de versnelling is. Je krijgt de massa, maar je moet de versnelling kennen. Om de versnelling (of vertraging, in dit geval) te vinden met de informatie die u hebt, gebruikt u deze handige herschikking van de bewegingswetten: v ^ 2 = u ^ 2 + 2as waar v de eindsnelheid is, u de beginsnelheid, a is d