Antwoord:
Uitleg:
Overweeg figuur 1
In een trapezoïde ABCD die voldoet aan de voorwaarden van het probleem (waar
Als we twee lijnen loodrecht op segment AB tekenen, waarbij we segmenten AF en BG vormen, kunnen we dat zien
Sinds
Dat kunnen we ook zien
Overweeg figuur 2
We kunnen zien dat de trapezium in figuur 2 een andere vorm heeft dan die in figuur 1, maar beide voldoen aan de voorwaarden van het probleem. Ik presenteerde deze twee figuren om te laten zien dat de informatie van het probleem niet toelaat om de maten van de basis 1 te bepalen (
In
Sinds
Opmerking: we zouden kunnen proberen te bepalen m en n het conjugeren van deze twee vergelijkingen:
In
In
(
Maar als we dit systeem van twee vergelijkingen oplossen, zouden we dat alleen maar ontdekken m en de zijkant ADVERTENTIE zijn onbepaald.
De basis van een driehoek van een bepaald gebied varieert omgekeerd als de hoogte. Een driehoek heeft een basis van 18 cm en een hoogte van 10 cm. Hoe vind je de hoogte van een driehoek van hetzelfde oppervlak en met een basis van 15 cm?
Hoogte = 12 cm Het oppervlak van een driehoek kan worden bepaald met het vergelijkingsgebied = 1/2 * basis * hoogte Zoek het gebied van de eerste driehoek door de metingen van de driehoek in de vergelijking te plaatsen. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 Laat de hoogte van de tweede driehoek = x. Dus de gebiedsvergelijking voor de tweede driehoek = 1/2 * 15 * x Aangezien de gebieden gelijk zijn, 90 = 1/2 * 15 * x Tijden beide zijden met 2. 180 = 15x x = 12
Het oppervlak van de zijkant van een rechter cilinder kan worden gevonden door tweemaal het aantal pi te vermenigvuldigen met de straal maal de hoogte. Als een ronde cilinder een straal f en hoogte h heeft, wat is dan de uitdrukking die het oppervlak van zijn zijde vertegenwoordigt?
= 2pifh = 2pifh
Twee parallelle koorden van een cirkel met lengten van 8 en 10 dienen als basis van een trapezium ingeschreven in de cirkel. Als de lengte van een straal van de cirkel 12 is, wat is dan het grootst mogelijke oppervlak van een dergelijke beschreven ingeschreven trapezium?
72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 Overweeg Fign. 1 en 2 Schematisch kunnen we een parallellogram ABCD in een cirkel plaatsen, en op voorwaarde dat zijden AB en CD akkoorden zijn van de cirkels, op de manier van figuur 1 of figuur 2. De voorwaarde dat de zijden AB en CD moeten zijn akkoorden van de cirkel impliceert dat de ingeschreven trapezoïde een gelijkbenige moet zijn omdat de diagonalen van de trapezoïde (AC en CD) gelijk zijn omdat A hat BD = B hat AC = B hatD C = A hat CD en de lijn loodrecht op AB en CD passerend door het midden E doorsnijdt deze akkoorden (dit betekent dat AF = BF en CG = DG en