Antwoord:
Uitleg:
De kosten van verbruikte materialen (was) zijn
Als u besluit om nooit meer kaarsen te maken en niemand bereid kunt vinden om kaarsmallen van u te gebruiken, wordt de waarde van de kaarsmallen effectief tot nul herleid.
In dit geval zijn de kosten voor het maken van de 8 kaarsen
Als u aan de andere kant van plan bent om (misschien wel duizenden) kaarsen te maken, kan de waardevermindering van de kosten van de vormen onbeduidend zijn.
In dit geval zijn de kosten van het maken van de 8 kaarsen de enige kost van de was
Vorige week ontving een kaarsenwinkel $ 355,60 voor de verkoop van 20 kaarsen. Kleine kaarsen verkopen voor $ 10,98 en grote kaarsen verkopen voor $ 27,98 Hoeveel grote kaarsen verkocht de winkel?
De winkel verkocht 8 grote kaarsen. Laten we eerst de kleine kaarsen noemen die de winkel verkoopt en de grote kaarsen die ze verkopen. L: Dan, uit het probleem, weten we: s + l = 20 en s * 10.98 + l * 27.98 = 355.60 Als we de eerste vergelijking oplossen voor s we krijgen: s + l - l = 20 - ls + 0 = 20 - ls = 20 - l Nu kunnen we 20 - l vervangen door s in de tweede vergelijking en oplossen voor l: ((20-l) * 10.98 ) + 27.98l = 355.60 219.60 - 10.98l + 27.98l = 355.60 219.60 + 17l = 355.60 219.60 - 219.60 + 17l = 355.60 - 219.60 0 + 17l = 136 17l = 136 (17l) / 17 = 136/17 l = 8
Vorige week ontving een kaarsenwinkel $ 365 voor de verkoop van 20 kaarsen. Kleine kaarsen verkopen voor $ 10 en grote kaarsen verkopen voor $ 25. Hoeveel grote kaarsen heeft de winkel verkocht?
11 grote kaarsen werden verkocht. Definieer eerst de onbekenden, bij voorkeur met behulp van één variabele. Laat het aantal kleine kaarsen x zijn. Er waren 20 kaarsen in totaal verkocht, dus het aantal grote kaarsen is 20 x De totale kosten van de kleine kaarsen zijn 10 xx x = 10x De totale kosten van de grote kaarsen zijn 25 xx (20 -x) De winkel ontving $ 365 voor alle verkochte kaarsen: maak een vergelijking ... 10x + 25 (20-x) = 365 10x + 500 - 25x = 365 500- 365 = 15x 135 = 15x rArr x = 135/15 x = 9 Er waren 9 kleine kaarsen verkocht, dus er zijn 20-9 = 11 grote kaarsen verkocht.
Je hebt twee kaarsen van gelijke lengte. Kaars A duurt zes uur om te branden en kaars B duurt drie uur om te branden. Als je ze tegelijkertijd aansteekt, hoe lang zal het duren voordat kaars A twee keer zo lang is als kaars B? Beide kaarsen branden een constante snelheid.
Twee uur Begin met letters om de onbekende hoeveelheden weer te geven, Laat verbranden tijd = t Laat beginlengte = L Lengte kaars A = x en lengte kaars B = y Schrijven van vergelijkingen voor wat we van ze weten: Wat ons verteld wordt: Aan het begin (wanneer t = 0), x = y = L Op t = 6, x = 0 dus brandsnelheid van kaars A = L per 6 uur = L / (6uur) = L / 6 per uur Op t = 3 , y = 0 dus brandsnelheid van kaars B = L / 3 per uur Schrijf eqns voor x en y met behulp van wat we weten. bijv. x = L - "brandsnelheid" * tx = L - L / 6 * t ............. (1) Controleer of op t = 0, x = L en op t = 6, x = 0. Ja dat doen we! y