Antwoord:
Zie een oplossingsproces hieronder:
Uitleg:
Laten we het eerste opeenvolgende even gehele getal noemen:
Vervolgens zou het tweede opeenvolgende even gehele getal zijn:
Dus, van de informatie in het probleem kunnen we nu schrijven en oplossen:
Daarom is het eerste even gehele getal:
Het tweede opeenvolgende even gehele getal is:
Drie opeenvolgende positieve even gehele getallen zijn zodanig dat het product de tweede en derde gehele getallen twintig meer dan tien keer het eerste gehele getal is. Wat zijn deze nummers?
Laat de getallen x, x + 2 en x + 4 zijn. Dan (x + 2) (x + 4) = 10x + 20 x ^ 2 + 2x + 4x + 8 = 10x + 20 x ^ 2 + 6x + 8 = 10x + 20 x ^ 2 - 4x - 12 = 0 (x - 6) (x + 2) = 0 x = 6 en -2 Aangezien het probleem aangeeft dat het gehele getal positief moet zijn, hebben we dat de getallen 6, 8 zijn en 10. Hopelijk helpt dit!
Wat zijn twee opeenvolgende even gehele getallen zodat hun som gelijk is aan een verschil van drie keer de grootste en twee keer de kleinere?
4 en 6 Laat x = de kleinste van de opeenvolgende even gehele getallen. Dat betekent dat de grootste van de twee opeenvolgende even gehele getallen x + 2 is (omdat even getallen twee waarden uit elkaar liggen). De som van deze twee getallen is x + x + 2. Het verschil van drie keer het grotere aantal en twee keer het kleinere is 3 (x + 2) -2 (x). De twee expressies gelijk aan elkaar instellen: x + x + 2 = 3 (x + 2) -2 (x) Vereenvoudig en los op: 2x + 2 = 3x + 6-2x 2x + 2 = x + 6 x = 4 So het kleinere gehele getal is 4 en groter is 6.
"Lena heeft 2 opeenvolgende gehele getallen.Ze merkt dat hun som gelijk is aan het verschil tussen hun vierkanten. Lena kiest nog eens 2 opeenvolgende gehele getallen en merkt hetzelfde op. Bewijs algebra dat dit geldt voor elke 2 opeenvolgende gehele getallen?
Zie de toelichting alstublieft. Bedenk dat de opeenvolgende gehele getallen met 1 verschillen. Dus als m één geheel getal is, moet het volgende gehele getal n + 1 zijn. De som van deze twee gehele getallen is n + (n + 1) = 2n + 1. Het verschil tussen hun vierkanten is (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, zoals gewenst! Voel de vreugde van wiskunde.!