Antwoord:
zijden:
Uitleg:
Kant
heeft een lengte van
Niet dat
#color (rood) (a) # kan niet een van de zijden van gelijke lengte zijn van de gelijkzijdige driehoek, aangezien het maximale gebied dat zo'n driehoek zou kunnen hebben, zou zijn# (Kleur (rood) (2sqrt (2))) ^ 2/2 # wat minder is dan#15#
Gebruik makend van
De stelling van Pythagoras gebruiken:
en aangezien de driehoek gelijkbenig is
Twee hoeken van een gelijkbenige driehoek staan op (1, 3) en (5, 3). Als het gebied van de driehoek 6 is, wat zijn de lengtes van de zijden van de driehoek?
De zijden van de gelijkbenige driehoek: 4, sqrt13, sqrt13 We worden gevraagd naar het gebied van een gelijkbenige driehoek met twee hoeken bij (1,3) en (5,3) en gebied 6. Wat zijn de lengten van de zijden . We weten de lengte van deze eerste kant: 5-1 = 4 en ik ga ervan uit dat dit de basis van de driehoek is. Het gebied van een driehoek is A = 1 / 2bh. We weten b = 4 en A = 6, dus we kunnen erachter komen h: A = 1 / 2bh 6 = 1/2 (4) hh = 3 We kunnen nu een rechthoekige driehoek construeren met h als een zijde, 1/2 b = 1/2 (4) = 2 als de tweede zijde, en de hypotenusa is de "schuine zijde" van de driehoek (waarbij
Twee hoeken van een gelijkbenige driehoek staan op (1, 6) en (2, 9). Als het gebied van de driehoek 24 is, wat zijn de lengtes van de zijden van de driehoek?
Base sqrt {10}, common side sqrt {2329/10} De stelling van Archimedes zegt dat het gebied a gerelateerd is aan de vierkante zijden A, B en C door 16a ^ 2 = 4AB- (CAB) ^ 2 C = (2-1 ) ^ 2 + (9-6) ^ 2 = 10 Voor een gelijkbenige driehoek, ofwel A = B of B = C. Laten we beide uitwerken. A = B eerst. 16 (24 ^ 2) = 4A ^ 2 - (10-2A) ^ 2 16 (24 ^ 2) = -100 + 40A A = B = 1/40 (100+ 16 (24 ^ 2)) = 2329/10 B = C volgende. 16 (24) ^ 2 = 4 A (10) - A ^ 2 (A - 20) ^ 2 = - 8816 quad heeft geen echte oplossingen Dus vonden we de gelijkbenige driehoek met zijden basis sqrt {10}, gemeenschappelijke zijde sqrt {2329 / 10}
Twee hoeken van een gelijkbenige driehoek staan op (1, 7) en (2, 3). Als het gebied van de driehoek 6 is, wat zijn de lengtes van de zijden van de driehoek?
Maat van de drie zijden zijn (4.1231, 3.5666, 3.5666) Lengte a = sqrt ((2-1) ^ 2 + (3-7) ^ 2) = sqrt 17 = 4.1231 Oppervlakte van Delta = 6:. h = (Gebied) / (a / 2) = 6 / (4.1231 / 2) = 6 / 2.0616 = 2.9104 zijde b = sqrt ((a / 2) ^ 2 + h ^ 2) = sqrt ((2.0616) ^ 2 + (2.9104) ^ 2) b = 3.5666 Aangezien de driehoek gelijkbenig is, is de derde zijde ook = b = 3.5666