Antwoord:
De zijkanten van de gelijkbenige driehoek: 4,
Uitleg:
Er wordt ons gevraagd naar het gebied van een gelijkbenige driehoek met twee hoeken bij (1,3) en (5,3) en gebied 6. Wat zijn de lengtes van de zijden.
We weten de lengte van deze eerste kant:
Het gebied van een driehoek is
We kunnen nu een rechthoekige driehoek maken met
En nu hebben we alle kanten van de gelijkbenige driehoek: 4,
Twee hoeken van een gelijkbenige driehoek staan op (1, 6) en (2, 9). Als het gebied van de driehoek 24 is, wat zijn de lengtes van de zijden van de driehoek?
Base sqrt {10}, common side sqrt {2329/10} De stelling van Archimedes zegt dat het gebied a gerelateerd is aan de vierkante zijden A, B en C door 16a ^ 2 = 4AB- (CAB) ^ 2 C = (2-1 ) ^ 2 + (9-6) ^ 2 = 10 Voor een gelijkbenige driehoek, ofwel A = B of B = C. Laten we beide uitwerken. A = B eerst. 16 (24 ^ 2) = 4A ^ 2 - (10-2A) ^ 2 16 (24 ^ 2) = -100 + 40A A = B = 1/40 (100+ 16 (24 ^ 2)) = 2329/10 B = C volgende. 16 (24) ^ 2 = 4 A (10) - A ^ 2 (A - 20) ^ 2 = - 8816 quad heeft geen echte oplossingen Dus vonden we de gelijkbenige driehoek met zijden basis sqrt {10}, gemeenschappelijke zijde sqrt {2329 / 10}
Twee hoeken van een gelijkbenige driehoek staan op (1, 7) en (2, 3). Als het gebied van de driehoek 6 is, wat zijn de lengtes van de zijden van de driehoek?
Maat van de drie zijden zijn (4.1231, 3.5666, 3.5666) Lengte a = sqrt ((2-1) ^ 2 + (3-7) ^ 2) = sqrt 17 = 4.1231 Oppervlakte van Delta = 6:. h = (Gebied) / (a / 2) = 6 / (4.1231 / 2) = 6 / 2.0616 = 2.9104 zijde b = sqrt ((a / 2) ^ 2 + h ^ 2) = sqrt ((2.0616) ^ 2 + (2.9104) ^ 2) b = 3.5666 Aangezien de driehoek gelijkbenig is, is de derde zijde ook = b = 3.5666
Twee hoeken van een gelijkbenige driehoek staan op (1, 7) en (5, 3). Als het gebied van de driehoek 6 is, wat zijn de lengtes van de zijden van de driehoek?
Laat de coördinaten van de derde hoek van de gelijkbenige driehoek zijn (x, y). Dit punt ligt op gelijke afstand van andere twee hoeken. Dus (x-1) ^ 2 + (y-7) ^ 2 = (x-5) ^ 2 + (y-3) ^ 2 => x ^ 2-2x + 1 + y ^ 2-14y + 49 = x ^ 2-10x + 25 + y ^ 2-6y + 9 => 8x-8y = -16 => xy = -2 => y = x + 2 Nu is de loodlijn getekend van (x, y) op het lijnsegment het samenvoegen van twee gegeven hoeken van driehoek zal de zijkant halveren en de coördinaten van dit middelpunt zullen zijn (3,5). Dus hoogte van de driehoek H = sqrt ((x-3) ^ 2 + (y-5) ^ 2) En basis van de driehoek B = sqrt ((1-5) ^ 2 + (7-3) ^ 2) = 4sqrt2