De vergelijking van regel QR is y = - 1/2 x + 1. Hoe schrijf je een vergelijking van een lijn loodrecht op lijn QR in hellingsintercept vorm die punt (5, 6) bevat?
Zie een oplossingsproces hieronder: Eerst moeten we de helling van de voor de twee punten in het probleem vinden. De lijn QR bevindt zich in de vorm van een helling. De hellingsinterceptievorm van een lineaire vergelijking is: y = kleur (rood) (m) x + kleur (blauw) (b) Waar kleur (rood) (m) de helling is en kleur (blauw) (b) de y-waarde onderscheppen. y = kleur (rood) (- 1/2) x + kleur (blauw) (1) Daarom is de helling van QR: kleur (rood) (m = -1/2) Laten we vervolgens de helling voor de lijnloodlijn noemen naar deze m_p De regel van loodrechte hellingen is: m_p = -1 / m Vervangen van de berekende helling geeft: m_p = (-1)
Vraag 2: Lijn FG bevat de punten F (3, 7) en G (-4, -5). Lijn HI bevat punten H (-1, 0) en I (4, 6). Lijnen FG en HI zijn ...? evenwijdig loodrecht
"geen van beide"> "gebruikt het volgende met betrekking tot hellingen van lijnen" • "evenwijdige lijnen hebben gelijke hellingen" • "het product van loodrechte lijnen" = -1 "berekent hellingen m met de" kleur (blauw) "verloopformule" • kleur (wit) (x) m = (y_2-y_1) / (x_2-x_1) "let" (x_1, y_1) = F (3,7) "en" (x_2, y_2) = G (-4, - 5) m_ (FG) = (- 5-7) / (- 4-3) = (- 12) / (- 7) = 12/7 "laten" (x_1, y_1) = H (-1,0) "en" (x_2, y_2) = I (4,6) m_ (HI) = (6-0) / (4 - (- 1)) = 6/5 m_ (FG)! = m_ (HI) " lijnen niet parallel &
Welke uitspraak beschrijft het best de vergelijking (x + 5) 2 + 4 (x + 5) + 12 = 0? De vergelijking is kwadratisch van vorm, omdat deze kan worden herschreven als een kwadratische vergelijking met u-substitutie u = (x + 5). De vergelijking is kwadratisch van vorm, want wanneer deze is uitgevouwen,
Zoals hieronder uitgelegd zal u-vervanging het als kwadratisch in u beschrijven. Voor kwadratisch in x heeft de uitbreiding het hoogste vermogen van x als 2, en wordt dit het beste beschreven als kwadratisch in x.