Antwoord:
Uitleg:
Wanneer we de vertex krijgen, kunnen we onmiddellijk een formatie vertex schrijven, die er zo uitziet
Nu hebben we
Of wacht, dat doen we.
We weten dat voor een punt,
Wij hebben
Onze vergelijking moet een lijn zijn, geen punt, dus we zullen het niet nodig hebben
Wat is de vergelijking van de parabool met een hoekpunt op (0, 0) en gaat door punt (-1, -4)?
Y = -4x ^ 2> "de vergelijking van een parabool in" kleur (blauw) "vertex-vorm" is. • kleur (wit) (x) y = a (xh) ^ 2 + k "waarbij" (h, k) "de coördinaten van de vertex zijn en een" "is hier een vermenigvuldiger" "(h, k) = (0,0) "dus" y = ax ^ 2 "om een substituut" (-1, -4) "te vinden in de vergelijking" -4 = ay = -4x ^ 2larrcolor (blauw) "vergelijking van parabool" grafiek { -4x ^ 2 [-10, 10, -5, 5]}
Wat is de vergelijking van de parabool met een hoekpunt op (10, 8) en gaat door punt (5,83)?
Er zijn feitelijk twee vergelijkingen die voldoen aan de opgegeven voorwaarden: y = 3 (x - 10) ^ 2 + 8 en x = -1/1125 (y-8) ^ 2 + 10 Een grafiek van beide parabolen en de punten is opgenomen in de uitleg. Er zijn twee algemene vertexvormen: y = a (xh) ^ 2 + k en x = a (yk) ^ 2 + h waarbij (h, k) de vertex is Dit geeft ons twee vergelijkingen waar "a" onbekend is: y = a (x - 10) ^ 2 + 8 en x = a (y-8) ^ 2 + 10 Om "a" voor beiden te vinden, vervangt u het punt (5,83) 83 = a (5 - 10) ^ 2 +8 en 5 = a (83-8) ^ 2 + 10 75 = a (-5) ^ 2 en -5 = a (75) ^ 2 a = 3 en a = -1/1125 De twee vergelijkingen zijn: y = 3 (
Wat is de vergelijking van de parabool met een hoekpunt op (-1, 16) en gaat door punt (3,20)?
F (x) = 1/4 (x + 1) ^ 2 + 16 De standaardvorm van de vergelijking van een parabool is: f (x) = a (x-h) ^ 2 + k Van de vraag weten we twee dingen. De parabool heeft een hoekpunt op (-1, 16). De parabool passeert het punt (3, 20). Met deze twee delen informatie kunnen we onze vergelijking voor de parabool construeren. Laten we beginnen met de basisvergelijking: f (x) = a (xh) ^ 2 + k Nu kunnen we onze vertex-coördinaten vervangen door h en k De x-waarde van je vertex is h en de y-waarde van je vertex is k: f (x) = a (x + 1) ^ 2 + 16 Merk op dat het zetten van -1 in voor h het (x - (- 1) maakt) wat hetzelfde is als (x +