Antwoord:
Veel voorkomende fouten in de synthetische divisie:
(Ik heb aangenomen dat de deler een binomiaal is, omdat dat veruit de meest voorkomende situatie is).
Uitleg:
Het weglaten
Gegeven een uitdrukking
Het is belangrijk om dit te behandelen als
Dus de bovenste regel ziet er als volgt uit:
De constante duur van de deler niet negeren.
Bijvoorbeeld als de deler is
dan moet de vermenigvuldiger zijn
Niet delen door of delen op het verkeerde moment door de leidende coëfficiënt.
Als de binomiale deler niet monisch is, moet de som van de termen worden gedeeld door de leidende coëfficiënt voordat het resultaat wordt vermenigvuldigd om de tweede term van de volgende kolom op te geven.
Bijvoorbeeld
moet worden ingesteld als
Er zijn studenten en banken in een klaslokaal. Als er 4 studenten in elke bank zitten, zijn er 3 banken vrij. Maar als 3 studenten in een bank zitten, blijven er 3 studenten staan. Wat zijn de totale aantallen. van studenten ?
Het aantal studenten is 48 Laat het aantal studenten = y laat het aantal banken = x van de eerste stelling y = 4x - 12 (drie lege banken * 4 studenten) van de tweede stelling y = 3x +3 Vervanging van vergelijking 2 in vergelijking 1 3x + 3 = 4x - 12 herschikken x = 15 Vervangen van de waarde voor x in vergelijking 2 y = 3 * 15 + 3 = 48
Wat zijn veelvoorkomende fouten die studenten maken bij het werken met een domein?
Domein is meestal een vrij eenvoudig concept en lost meestal alleen vergelijkingen op. Echter, een plaats die ik heb gevonden dat mensen de neiging hebben fouten te maken in het domein, is wanneer ze composities moeten evalueren. Overweeg bijvoorbeeld het volgende probleem: f (x) = sqrt (4x + 1) g (x) = 1 / 4x Evalueer f (g (x)) en g (f (x)) en vermeld het domein van elke compositie functie. f (g (x)): sqrt (4 (1 / 4x) +1) sqrt (x + 1) Het domein hiervan is x -1, wat je krijgt door in te stellen wat er in de root is groter dan of gelijk aan nul . g (f (x)): sqrt (4x + 1) / 4 Het domein van dit is allemaal reals. Als we de
Wat zijn veelvoorkomende fouten die studenten maken bij het werken met bereik?
Zie hieronder. Enkele veelgemaakte fouten die studenten tegenkomen bij het werken met bereik kunnen zijn: Vergeten om rekening te houden met horizontale asymptoten (maak je hier geen zorgen om totdat je bij de Rational Functions-eenheid komt) (Vaak gemaakt met logaritmische functies) De grafiek van de rekenmachine gebruiken zonder je geest te gebruiken om het venster intepret te maken (rekenmachines laten bijvoorbeeld geen grafieken zien die doorgaan naar verticale asymptoten, maar algebraïsch, je kunt afleiden dat ze dat eigenlijk zouden moeten doen) Het bereik verwarren met domein (domein is meestal x, terwijl berei