Laat
De afstandsformule voor cartesiaanse coördinaten is
Waar
Afstand tussen oorsprong en punt P d.w.z.
Afstand tussen oorsprong en punt Q, d.w.z.
Afstand tussen punt P en punt Q, d.w.z.
Ik zal het elektrische potentieel op punten uitwerken
Dan zal ik dit gebruiken om het potentiële verschil tussen de twee punten uit te werken.
Dit is het werk dat gedaan wordt door een eenheidslading tussen de twee punten te verplaatsen.
Het werk gedaan in het verplaatsen van een
Het elektrische potentieel als gevolg van een lading
Waar
Dus het potentiële punt
Het potentieel op
Dus het potentiële verschil wordt gegeven door:
Dus het werk gedaan in het verplaatsen van een
Dit is het werk aan de aanklacht.
Er worden geen eenheden van afstand gegeven. Als dit in meters was, zou het antwoord in Joules zijn.
Objecten A en B staan aan de oorsprong. Als object A verplaatst naar (6, 7) en object B verplaatst naar (-1, 3) over 4 seconden, wat is de relatieve snelheid van object B vanuit het perspectief van object A?
Gebruik eerst de stelling van Pythagoras en gebruik dan de vergelijking d = vt Object A is verplaatst c = sqrt (6 ^ 2 + 7 ^ 2 = 9.22m Object B is verplaatst c = sqrt ((- 1) ^ 2 + 3 ^ 2 = 3.16m De snelheid van Object A is dan {9.22m} / {4s} = 2.31m / s De snelheid van Object B is dan {3.16m} / {4s} =. 79m / s Omdat deze objecten in tegengestelde richting bewegen , deze snelheden zullen toevoegen, zodat ze lijken te bewegen met 3,10 m / s van elkaar vandaan.
Objecten A en B staan aan de oorsprong. Als object A verplaatst naar (-2, 8) en object B verplaatst naar (-5, -6) over 4 seconden, wat is dan de relatieve snelheid van object B vanuit het perspectief van object A?
Vec v_ (AB) = sqrt 203/4 (eenheid) / s "verplaatsing tussen twee punten is:" Delta vec x = -5 - (- 2) = - 3 "eenheid" Delta vec y = -6-8 = - 14 "eenheid" Delta vec s = sqrt ((- 3) ^ 2 + (- 14) ^ 2)) Delta vec s = sqrt (9 + 194) = sqrt 203 vec v_ (AB) = (Delta vec's) / (Delta t) vec v_ (AB) = sqrt 203/4 (eenheid) / s
Objecten A en B staan aan de oorsprong. Als object A verplaatst naar (6, -2) en object B verplaatst naar (2, 9) over 5 s, wat is de relatieve snelheid van object B vanuit het perspectief van object A? Neem aan dat alle eenheden in meters zijn uitgedrukt.
V_ (AB) = sqrt137 / 5 m / s "snelheid van B vanuit het perspectief van A (groene vector)." "afstand tussen het punt van A en B:" Delta s = sqrt (11² + 4 ^ 2) "" Delta s = sqrt (121 + 16) "" Delta s = sqrt137 m v_ (AB) = sqrt137 / 5 m / s "snelheid van B vanuit het perspectief van A (groene vector)." "de perspectiefhoek wordt getoond in figuur" (alpha). "" tan alpha = 11/4