Antwoord:
Kijk beneden:)
Uitleg:
Als u het gemiddelde van een reeks getallen wilt vinden, voegt u eerst alle getallen in de set toe en deelt u deze vervolgens door het totale aantal getallen.
Stel dat uw set bestaat uit het volgende:
Je zou ze optellen:
Nu zou je het totaal nemen
Ons gemiddelde is
De eerste en tweede termen van een geometrische reeks zijn respectievelijk de eerste en derde termen van een lineaire reeks. De vierde term van de lineaire reeks is 10 en de som van de eerste vijf term is 60 Vind de eerste vijf termen van de lineaire reeks?
{16, 14, 12, 10, 8} Een typische geometrische reeks kan worden weergegeven als c_0a, c_0a ^ 2, cdots, c_0a ^ k en een typische rekenkundige rij als c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a als het eerste element voor de geometrische reeks die we hebben {(c_0 a ^ 2 = c_0a + 2Delta -> "Eerste en tweede van GS zijn de eerste en derde van een LS"), (c_0a + 3Delta = 10- > "De vierde term van de lineaire reeks is 10"), (5c_0a + 10Delta = 60 -> "De som van de eerste vijf term is 60"):} Oplossen voor c_0, a, Delta we verkrijgen c_0 = 64/3 , a = 3/4, Delta = -2 en
De formule voor het vinden van het gebied van een vierkant is A = s ^ 2. Hoe transformeer je deze formule om een formule te vinden voor de lengte van een zijde van een vierkant met een gebied A?
S = sqrtA Gebruik dezelfde formule en verander het onderwerp dat u wilt zijn. Met andere woorden, isoleer s. Meestal is het proces als volgt: begin met het kennen van de lengte van de zijkant. "side" rarr "square the side" rarr "Area" Doe precies het tegenovergestelde: lees van rechts naar links "side" larr "vind de vierkantswortel" larr "Area" In Maths: s ^ 2 = A s = sqrtA
De som van de cijfers van een driecijferig nummer is 15. Het cijfer van het apparaat is minder dan de som van de andere cijfers. De tientallen cijfers zijn het gemiddelde van de andere cijfers. Hoe vind je het nummer?
A = 3 ";" b = 5 ";" c = 7 Gegeven: a + b + c = 15 ................... (1) c <b + a ............................... (2) b = (a + c) / 2 ...... ........................ (3) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ Overwegen vergelijking (3) -> 2b = (a + c) Schrijf vergelijking (1) als (a + c) + b = 15 Door te substitueren wordt dit 2b + b = 15 kleuren (blauw) (=> b = 5) '~~~~~~~~~~~~~~ Nu hebben we: a + 5 + c = 15. .................. (1_a) c <5 + a ........................ ...... (2_a) 5 = (a + c) / 2 .............................. (3_a ) '~~~~~~~~~~~~~~~~