Antwoord:
23 en 25 samen toevoegen aan 48.
Uitleg:
U kunt twee opeenvolgende oneven gehele getallen als waarde beschouwen
Linkerzijde consolideren:
Trek 2 van beide kanten af:
Verdeel beide zijden door 2:
Nu wetend dat het kleinere aantal was
Een andere manier om dit op te lossen vereist een beetje intuïtie. Als we delen
Het product van twee opeenvolgende oneven gehele getallen is 29 minder dan 8 keer hun som. Zoek de twee gehele getallen. Antwoord eerst in de vorm van gepaarde punten met de laagste van de twee gehele getallen?
(13, 15) of (1, 3) Laat x en x + 2 de oneven opeenvolgende getallen zijn, dan hebben we vanaf de vraag (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 of 1 Nu, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. De cijfers zijn (13, 15). CASE II: x = 1:. x + 2 = 1+ 2 = 3:. De cijfers zijn (1, 3). Vandaar dat er hier twee gevallen worden gevormd; het paar getallen kan zowel (13, 15) als (1, 3) zijn.
De som van vier opeenvolgende oneven gehele getallen is drie meer dan vijf keer de kleinste van de gehele getallen, wat zijn de gehele getallen?
N -> {9,11,13,15} kleur (blauw) ("Building the equations") Laat de eerste oneven term zijn n Laat de som van alle termen zijn s dan term 1-> n termijn 2-> n +2 term 3-> n + 4 term 4-> n + 6 Dan s = 4n + 12 ............................ ..... (1) Gegeven dat s = 3 + 5n .................................. ( 2) '~~~~~~~~~~~~~~~~~~~~~~~~~ Vergelijking (1) tot (2) waardoor de variabele s 4n + 12 = s = 3 + 5n Verzamelen als termen 5n-4n = 12-3 n = 9 '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ Dus de termen zijn: term 1-> n-> 9 term 2-> n + 2-> 11
Twee gehele getallen hebben een som van 16. één van de gehele getallen is 4 meer dan de andere. wat zijn de andere twee gehele getallen?
Gehele getallen zijn 10 en 6 Laat gehele getallen zijn x en y Som van gehele getallen zijn 16 x + y = 16 (vergelijking 1) Eén gehele getallen is 4 meer dan andere => x = y + 4 in vergelijking 1 x + y = 16 => y + 4 + y = 16 => 2y + 4 = 16 => 2y = 12 => y = 6 en x = y + 4 = 6 + 4 x = 10