Antwoord:
De twee nummers zijn
Uitleg:
Laat
Controleren:
Antwoord:
De cijfers zijn
Uitleg:
Je kunt dit oplossen door te gebruiken
Maar we kennen de relatie tussen de twee nummers (ze voegen toe
Laat een nummer zijn
Schrijf een uitdrukking voor "Twee keer één getal plus drie keer het andere getal:"
Maak een vergelijking: de som is gelijk aan
Als een nummer is
Controleren:
De som van drie opeenvolgende gehele getallen is gelijk aan 9 minder dan 4 keer de laagste van de gehele getallen. Wat zijn de drie gehele getallen?
12,13,14 We hebben drie opeenvolgende gehele getallen. Laten we ze x, x + 1, x + 2 noemen. Hun som, x + x + 1 + x + 2 = 3x + 3 is gelijk aan negen minder dan vier keer de kleinste van de gehele getallen, of 4x-9 En zo kunnen we zeggen: 3x + 3 = 4x-9 x = 12 En dus zijn de drie gehele getallen: 12,13,14
De som van drie getallen is 137. Het tweede getal is vier meer dan, twee keer het eerste getal. Het derde cijfer is vijf minder dan, drie keer het eerste getal. Hoe vind je de drie nummers?
De nummers zijn 23, 50 en 64. Begin met het schrijven van een uitdrukking voor elk van de drie nummers. Ze zijn allemaal gevormd vanaf het eerste nummer, dus laten we het eerste nummer x noemen. Laat het eerste getal zijn x Het tweede getal is 2x +4 Het derde getal is 3x -5 We krijgen te horen dat hun som 137 is. Dit betekent dat wanneer we ze allemaal bij elkaar optellen, het antwoord 137 zal zijn. Schrijf een vergelijking. (x) + (2x + 4) + (3x - 5) = 137 De haakjes zijn niet nodig, ze zijn opgenomen voor de duidelijkheid. 6x -1 = 137 6x = 138 x = 23 Zodra we het eerste getal kennen, kunnen we de andere twee berekenen aan
Twee keer een getal plus drie keer een ander getal is gelijk aan 4. Drie keer het eerste cijfer plus vier keer het andere cijfer is 7. Wat zijn de cijfers?
Het eerste nummer is 5 en de tweede is -2. Laat x het eerste getal zijn en y de tweede. Dan hebben we {(2x + 3y = 4), (3x + 4y = 7):} We kunnen elke methode gebruiken om dit systeem op te lossen. Bijvoorbeeld door eliminatie: ten eerste, het elimineren van x door het aftrekken van een veelvoud van de tweede vergelijking van de eerste, 2x + 3y- 2/3 (3x + 4y) = 4 - 2/3 (7) => 1 / 3y = - 2/3 => y = -2 en plaats dat resultaat terug in de eerste vergelijking, 2x + 3 (-2) = 4 => 2x - 6 = 4 => 2x = 10 => x = 5 Dus het eerste getal is 5 en de tweede is -2. Controleren door deze aan te sluiten bevestigt het resultaat