Antwoord:
Uitleg:
In de natuurkunde moet het momentum altijd worden behouden bij een botsing. Daarom is de gemakkelijkste manier om dit probleem te benaderen, door het deeltje van elk deeltje op te splitsen in de verticale en horizontale momentumcomponenten.
Omdat de deeltjes dezelfde massa en snelheid hebben, moeten ze ook hetzelfde momentum hebben. Om onze berekeningen gemakkelijker te maken, ga ik er maar van uit dat dit momentum 1 Nm is.
Beginnend met deeltje A, kunnen we de sinus en de cosinus van 30 nemen om vast te stellen dat het een horizontaal momentum heeft
Voor deeltje B kunnen we hetzelfde proces herhalen om te vinden dat de horizontale component is
Nu kunnen we de horizontale componenten bij elkaar optellen om ervoor te zorgen dat het horizontale momentum van deeltje C zal zijn
Zodra we deze twee componenten krachten hebben, kunnen we eindelijk oplossen
De snelheid van een deeltje dat langs de x-as beweegt, wordt gegeven als v = x ^ 2 - 5x + 4 (in m / s), waarbij x staat voor de x-coördinaat van het deeltje in meters. Vind de grootte van de versnelling van het deeltje wanneer de snelheid van het deeltje nul is?
A Gegeven snelheid v = x ^ 2-5x + 4 Versnelling a - = (dv) / dt: .a = d / dt (x ^ 2-5x + 4) => a = (2x (dx) / dt-5 (dx) / dt) We weten ook dat (dx) / dt- = v => a = (2x -5) v bij v = 0 bovenstaande vergelijking wordt a = 0
Water lekt uit een omgekeerde conische tank met een snelheid van 10.000 cm3 / min, terwijl water met constante snelheid in de tank wordt gepompt. Als de tank een hoogte van 6 m heeft en de diameter bovenaan 4 m is en als het waterniveau stijgt met een snelheid van 20 cm / min wanneer de hoogte van het water 2 m is, hoe vindt u dan de snelheid waarmee het water in de tank wordt gepompt?
Laat V het volume water in de tank zijn, in cm ^ 3; laat h de diepte / hoogte van het water zijn, in cm; en laat r de straal zijn van het oppervlak van het water (bovenaan), in cm. Omdat de tank een omgekeerde kegel is, is ook de massa water. Aangezien de tank een hoogte heeft van 6 m en een straal bovenaan 2 m, impliceert dezelfde driehoek dat frac {h} {r} = frac {6} {2} = 3 zodat h = 3r. Het volume van de omgekeerde kegel van water is dan V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Onderscheid nu beide zijden met betrekking tot tijd t (in minuten) om frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} te krijgen (de kettin
Een deeltje wordt geprojecteerd vanaf de grond met een snelheid van 80 m / s onder een hoek van 30 ° met horizontaal vanaf de grond. Wat is de grootte van de gemiddelde snelheid van het deeltje in het tijdsinterval t = 2s tot t = 6s?
Laten we de tijd bekijken die het deeltje nodig heeft om de maximale hoogte te bereiken, het is, t = (u sin theta) / g Gegeven, u = 80ms ^ -1, theta = 30 dus, t = 4.07 s Dat betekent dat het bij 6s al begonnen is naar beneden gaan. Dus, opwaartse verplaatsing in 2s is, s = (u sin theta) * 2 -1/2 g (2) ^ 2 = 60.4m en verplaatsing in 6s is s = (u sin theta) * 6 - 1/2 g ( 6) ^ 2 = 63.6m Dus verticale verschuiving in (6-2) = 4s is (63.6-60.4) = 3.2m en horizontale verplaatsing in (6-2) = 4s is (u cos theta * 4) = 277.13m Dus de netto verplaatsing is 4s is sqrt (3.2 ^ 2 + 277.13 ^ 2) = 277.15m Dus, gemiddelde velcoïteit =