Antwoord:
Uitleg:
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
Twee schutters schieten tegelijk op een doelwit. Jiri raakt het doelwit 70% van de tijd en Benita raakt het doelwit 80% van de tijd. Hoe bepaal je de kans dat Jiri hem raakt, maar Benita mist?
Waarschijnlijkheid is 0,14. Disclaimer: Het is lang geleden dat ik statistieken heb gemaakt, ik heb hopelijk de roest eraf geschud maar hopelijk zal iemand me een dubbele controle geven. Kans op Benita ontbreekt = 1 - Kans dat Benita slaat. P_ (Bmiss) = 1 - 0.8 = 0.2 P_ (Jhit) = 0.7 We willen de kruising van deze gebeurtenissen. Omdat deze gebeurtenissen onafhankelijk zijn, gebruiken we de vermenigvuldigingsregel: P_ (Bmiss) nnn P_ (Jhit) = P_ (Bmiss) * P_ (Jhit) = 0.2 * 0.7 = 0.14
Wat is de vergelijking van de lijn die raakt aan f (x) = x ^ 2 + sin ^ 2x aan x = pi?
Zoek de afgeleide en gebruik de definitie van de helling. De vergelijking is: y = 2πx-π ^ 2 f (x) = x ^ 2 + sin ^ 2x f '(x) = 2x + 2sinx (sinx)' f '(x) = 2x + 2sinxcosx De helling is gelijk aan de afgeleide: f '(x_0) = (yf (x_0)) / (x-x_0) Voor x_0 = π f' (π) = (yf (π)) / (x-π) Om deze waarden te vinden: f ( π) = π ^ 2 + sin ^ 2π f (π) = π ^ 2 + 0 ^ 2 f (π) = π ^ 2 f '(π) = 2 * π + 2sinπcosπ f' (π) = 2 * π + 2 * 0 * (- 1) f '(π) = 2π Eindelijk: f' (π) = (yf (π)) / (x-π) 2π = (y-π ^ 2) / (x-π ) 2π (x-π) = y-π ^ 2 y = 2πx-2π ^ 2 + π ^ 2 y = 2πx-π ^ 2