Antwoord:
De twee gehele getallen zijn
Uitleg:
Als
Het converteren van de relatie beschreven in woorden in de vraag naar een wiskundige vorm geeft:
Oplossen voor
De kwadratische vergelijking is opgelost voor
Aangezien de vraag aangeeft dat de gehele getallen vreemd zijn,
Het kleinere gehele getal is
Het grotere gehele getal is
Het product van twee opeenvolgende oneven gehele getallen is 29 minder dan 8 keer hun som. Zoek de twee gehele getallen. Antwoord eerst in de vorm van gepaarde punten met de laagste van de twee gehele getallen?
(13, 15) of (1, 3) Laat x en x + 2 de oneven opeenvolgende getallen zijn, dan hebben we vanaf de vraag (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 of 1 Nu, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. De cijfers zijn (13, 15). CASE II: x = 1:. x + 2 = 1+ 2 = 3:. De cijfers zijn (1, 3). Vandaar dat er hier twee gevallen worden gevormd; het paar getallen kan zowel (13, 15) als (1, 3) zijn.
De som van twee opeenvolgende getallen is 77. Het verschil van de helft van het kleinere getal en een derde van het grotere getal is 6. Als x het kleinere getal is en y het grotere getal, welke twee vergelijkingen de som en het verschil van de nummers?
X + y = 77 1 / 2x-1 / 3y = 6 Als u de cijfers wilt weten die u kunt blijven lezen: x = 38 y = 39
Wat is het middelste gehele getal van 3 opeenvolgende positieve even gehele getallen als het product van de kleinere twee gehele getallen 2 minder is dan 5 keer het grootste gehele getal?
8 '3 opeenvolgende positieve even gehele getallen kunnen worden geschreven als x; x + 2; x + 4 Het product van de twee kleinere gehele getallen is x * (x + 2) '5 keer het grootste gehele getal' is 5 * (x +4):. x * (x + 2) = 5 * (x + 4) - 2 x ^ 2 + 2x = 5x + 20 - 2 x ^ 2 -3x-18 = 0 (x-6) (x + 3) = 0 We kan het negatieve resultaat uitsluiten omdat de gehele getallen positief zijn, dus x = 6 Het middelste gehele getal is daarom 8