Los je dit op?

Los je dit op?
Anonim

Antwoord:

# approx 122426730 tekst {P} #

Uitleg:

Niet helemaal zeker wat hier bedoeld is. Het volume van het halfrond is # 1/2 (4/3 pi r ^ 3) = 2/3 pi r ^ 3 # en het volume van de cilinder is # pir ^ 2 h = pi r ^ 2 (20-r) = 20 pi r ^ 2 - pi r ^ 3 # dus een totaal volume van

#V = 20 pi r ^ 2 - pi / 3 r ^ 3 #

Ik weet niet zeker wat een basisoppervlak van 154 vierkante meter betekent, laten we aannemen dat dit betekent

# 154 = pi r ^ 2 #

# R ^ 2 = 154 / pi #

#r = sqrt {154 / pi} #

#V = 20 pi (154 / pi) - pi / 3 (154 / pi) sqrt {154 / pi} #

#V = 154/3 (60 - sqrt (154 / π)) approx 2720.594 text {m} ^ 3 #

# tekst {kosten} ongeveer 45 tekst {P} / tekst {L} maal 1000 tekst {L} / tekst {m} ^ 3 keer 2720.594 tekst {m} ^ 3 approx 122.426.730 tekst {P} #

Antwoord:

Ik neem aan dat we hier in Rupees handelen, wat betekent dat de totale kosten 1.224.300,00 Rupees (122.430.000 paise) bedragen

Uitleg:

Het eerste wat je moet doen is een uitdrukking uitzoeken om het volume van de watertank te bepalen.

Ik neem aan dat de tank een rechtopstaande cilinder is die wordt afgedekt door een halfrond. Het totale volume kan worden uitgedrukt als:

#V_ "tot" = V_ "cyl" + V_ "hemi" #

Het volume van een cilinder is # Hpir ^ 2 #, waar # H # is de hoogte van de cilinder.

Het volume van een halfrond is de helft van het volume van een bol:

#V_ "bol" = 4 / 3pir ^ 3 #

#V_ "hemi" = V_ "bol" / 2 = (4 / 3pir ^ 3) / 2 #

#V_ "hemi" = 2/3 # ^ 3pir

#V_ "tot" hpir = ^ 2 + 2 / 3pir ^ 3 #

We weten ook dat h de hoogte van de tank is MINUS de straal van het halfrond, omdat deze is afgedekt als één:

# H = 20-r #

#V_ "tot" = (20-r) pir ^ 2 + 2 / 3pir ^ 3 #

Het herschikken:

#V_ "tot" = pir ^ 2 (20-r + 2 / 3r) #

#V_ "tot" = pir ^ 2 (20-r / 3) #

We weten ook dat het basisgebied het gebied van de cirkel van de cylidner is, dat gelijk is aan # Pir ^ 2 #

#V_ "tot" = 154 (20-r / 3) #

Laten we het oplossen # R # om het totale volume te berekenen:

# 154 = pir ^ 2 rArr r = sqrt (154 / pi) #

# R ~ = 7 #

# (R = 7,001409) #

Nu dat we het weten # R #:

#V_ "tot" = 154 (20-7 / 3) #

#V_ "tot" = 154 (53/3) #

#color (blauw) (V_ "tot" = 2720 2/3 m ^ 3 #

nu we het volume in kubieke meters weten, moeten we converteren naar liters, om eenheden aan te passen voor de kosten per liter:

# 1 m ^ 3 = 1000L #

#kleur (blauw) (2720 2 / 3m ^ 3) = 2720666 2 / 3L #

Ten slotte hebben we de kosten per liter, die ons onze uiteindelijke kosten zullen opleveren:

# "COST" = 45 "paisa" / cancel (L) xx2720666 2 / 3cancel (L) #

# "COST" = 122430000 "paisa" #

Ervan uitgaande dat we handelen in Rupees, 1 Rupee is 100 paise:

# "COST" = 1224300 "Rupee" #