Antwoord:
De twee gehele getallen zijn
Uitleg:
We zullen het eerste gehele getal laten zijn
We kunnen nu schrijven en oplossen
Dus het eerste gehele getal is
Het product van twee opeenvolgende oneven gehele getallen is 29 minder dan 8 keer hun som. Zoek de twee gehele getallen. Antwoord eerst in de vorm van gepaarde punten met de laagste van de twee gehele getallen?
(13, 15) of (1, 3) Laat x en x + 2 de oneven opeenvolgende getallen zijn, dan hebben we vanaf de vraag (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 of 1 Nu, CASE I: x = 13:. x + 2 = 13 + 2 = 15:. De cijfers zijn (13, 15). CASE II: x = 1:. x + 2 = 1+ 2 = 3:. De cijfers zijn (1, 3). Vandaar dat er hier twee gevallen worden gevormd; het paar getallen kan zowel (13, 15) als (1, 3) zijn.
De som van vier opeenvolgende oneven gehele getallen is drie meer dan vijf keer de kleinste van de gehele getallen, wat zijn de gehele getallen?
N -> {9,11,13,15} kleur (blauw) ("Building the equations") Laat de eerste oneven term zijn n Laat de som van alle termen zijn s dan term 1-> n termijn 2-> n +2 term 3-> n + 4 term 4-> n + 6 Dan s = 4n + 12 ............................ ..... (1) Gegeven dat s = 3 + 5n .................................. ( 2) '~~~~~~~~~~~~~~~~~~~~~~~~~ Vergelijking (1) tot (2) waardoor de variabele s 4n + 12 = s = 3 + 5n Verzamelen als termen 5n-4n = 12-3 n = 9 '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ Dus de termen zijn: term 1-> n-> 9 term 2-> n + 2-> 11
Twee opeenvolgende oneven gehele getallen hebben een som van 48, wat zijn de twee oneven gehele getallen?
23 en 25 samen toevoegen aan 48. U kunt twee opeenvolgende oneven gehele getallen zien als zijnde waarde x en x + 2. x is de kleinste van de twee, en x + 2 is 2 meer dan het (1 meer dan het even zou zijn). We kunnen dat nu gebruiken in een algebra-vergelijking: (x) + (x + 2) = 48 Linkerkant consolideren: 2x + 2 = 48 Trek 2 van beide kanten af: 2x = 46 Deel beide kanten door 2: x = 23 Nu, wetende dat het kleinere aantal x was en x = 23, kunnen we 23 in x + 2 stoppen en 25 krijgen. Een andere manier om dit op te lossen vereist een beetje intuïtie. Als we 48 bij 2 delen, krijgen we er 24, wat gelijk is. Maar als we er 1