Antwoord:
Het domein van de functie is
Uitleg:
Het domein van een functie is de reeks getallen waarvoor die functie is gedefinieerd.
Voor eenvoudige rationale functies zijn de enige punten waar de functie niet gedefinieerd is wanneer de noemer gelijk is
Dus, het domein is het set van alle reële nummers behalve de oplossingen voor
Als je echter probeert om die kwadratische vergelijking op te lossen, zul je die vergelijking wel merken heeft geen echte oplossingen.
geen echte oplossing
Dat betekent simpelweg dat het geen zin heeft waar de functie ongedefinieerd is.
Daarom is het domein van de functie
Het domein van f (x) is de verzameling van alle reële waarden behalve 7 en het domein van g (x) is de verzameling van alle reële waarden behalve van -3. Wat is het domein van (g * f) (x)?
Alle reële getallen behalve 7 en -3 wanneer je twee functies vermenigvuldigt, wat doen we? we nemen de f (x) -waarde en vermenigvuldigen deze met de g (x) -waarde, waarbij x hetzelfde moet zijn. Beide functies hebben echter beperkingen, 7 en -3, dus het product van de twee functies moet * beide * beperkingen hebben. Meestal als bewerkingen op functies hebben, als de vorige functies (f (x) en g (x)) beperkingen hadden, worden ze altijd genomen als onderdeel van de nieuwe beperking van de nieuwe functie of hun werking. Je kunt dit ook visualiseren door twee rationale functies te maken met verschillende beperkte waarden,
Wat is het domein van de gecombineerde functie h (x) = f (x) - g (x), als het domein van f (x) = (4,4.5] en het domein van g (x) is [4, 4.5 )?
Het domein is D_ {f-g} = (4,4.5). Zie uitleg. (f-g) (x) kan alleen worden berekend voor die x, waarvoor zowel f als g zijn gedefinieerd. Dus we kunnen dat schrijven: D_ {f-g} = D_fnnD_g Hier hebben we D_ {f-g} = (4,4.5] nn [4,4.5) = (4,4.5)
Als f (x) = 3x ^ 2 en g (x) = (x-9) / (x + 1) en x! = - 1, wat is dan f (g (x)) gelijk? g (f (x))? f ^ -1 (x)? Wat zouden het domein, het bereik en de nullen voor f (x) zijn? Wat zouden het domein, het bereik en de nullen voor g (x) zijn?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = wortel () (x / 3) D_f = {x in RR}, R_f = {f (x) in RR; f (x)> = 0} D_g = {x in RR; x! = - 1}, R_g = {g (x) in RR; g (x)! = 1}