Antwoord:
Sinds
Uitleg:
Wij hebben
De algemene som van een oneindige meetkundige reeks is
In ons geval,
Geometrische reeksen komen alleen samen wanneer
Antwoord:
Uitleg:
Waar
Er wordt ons verteld dat common ratio is
De eerste termijn is
De som van een meetkundige reeks wordt gegeven als:
Voor de som tot het oneindige vereenvoudigt dit om:
We horen dat deze som S. is.
We vervangen onze waarden voor a en r:
Factor de teller:
Vermenigvuldig teller en noemer met
annuleren:
Om de mogelijke waarden te vinden, onthouden we dat een meetkundige reeks slechts een som tot oneindig heeft als
d.w.z.
De eerste en tweede termen van een geometrische reeks zijn respectievelijk de eerste en derde termen van een lineaire reeks. De vierde term van de lineaire reeks is 10 en de som van de eerste vijf term is 60 Vind de eerste vijf termen van de lineaire reeks?
{16, 14, 12, 10, 8} Een typische geometrische reeks kan worden weergegeven als c_0a, c_0a ^ 2, cdots, c_0a ^ k en een typische rekenkundige rij als c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a als het eerste element voor de geometrische reeks die we hebben {(c_0 a ^ 2 = c_0a + 2Delta -> "Eerste en tweede van GS zijn de eerste en derde van een LS"), (c_0a + 3Delta = 10- > "De vierde term van de lineaire reeks is 10"), (5c_0a + 10Delta = 60 -> "De som van de eerste vijf term is 60"):} Oplossen voor c_0, a, Delta we verkrijgen c_0 = 64/3 , a = 3/4, Delta = -2 en
De eerste term van een geometrische reeks is 200 en de som van de eerste vier termen is 324,8. Hoe vind je de gemeenschappelijke ratio?
De som van een willekeurige geometrische reeks is: s = a (1-r ^ n) / (1-r) s = som, a = beginperiode, r = gemeenschappelijke verhouding, n = term nummer ... We krijgen s, a, en n, dus ... 324.8 = 200 (1-r ^ 4) / (1-r) 1.624 = (1-r ^ 4) / (1-r) 1.624-1.624r = 1-r ^ 4 r ^ 4-1.624r + .624 = 0 r- (r ^ 4-1.624r + .624) / (4r ^ 3-1.624) (3r ^ 4-.624) / (4r ^ 3-1.624) we krijgen .. .5, .388, .399, .39999999, .3999999999999999 Dus de limiet is .4 of 4/10 Dus uw gemeenschappelijke ratio is 4/10 controle ... s (4) = 200 (1- (4 / 10) 4 ^)) / (1- (4/10)) = 324,8
De eerste term van een geometrische reeks is 4 en de vermenigvuldiger of ratio is -2. Wat is de som van de eerste 5 termen van de reeks?
Eerste term = a_1 = 4, gemeenschappelijke ratio = r = -2 en aantal termen = n = 5 Som van geometrische reeksen tot n tems wordt gegeven door S_n = (a_1 (1-r ^ n)) / (1-r ) Waar S_n de som tot n termen is, is n aantal termen, a_1 is de eerste term, r is de gemeenschappelijke ratio. Hier is a_1 = 4, n = 5 en r = -2 betekent S_5 = (4 (1 - (- 2) ^ 5)) / (1 - (- 2)) = (4 (1 - (- 32))) / (1 + 2) = (4 (1 + 32)) / 3 = (4 (33)) / 3 = 4 * 11 = 44 Vandaar dat de som 44 is