Antwoord:
Uitleg:
Antwoord:
Uitleg:
Er is een ZEER handige formule om de vergelijking van een rechte lijn te vinden als we twee punten op de lijn krijgen.
Het is sneller en gemakkelijker dan elke andere methode die ik ken en het gaat om het vervangen van ONCE, en vervolgens wat eenvoudiger.
De formule is gebaseerd op het feit dat een rechte lijn een constante helling heeft.
Bel de twee punten
Ik zal B (1,2) gebruiken als
Vervang niet door
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
Wat is de vergelijking van de lijn die doorloopt (9, -6) en loodrecht op de lijn waarvan de vergelijking y = 1 / 2x + 2 is?
Y = -2x + 12 De vergelijking van een lijn met bekende gradiënt "" m "" en een bekende reeks coördinaten "" (x_1, y_1) "" wordt gegeven door y-y_1 = m (x-x_1) de vereiste regel staat loodrecht op "" y = 1 / 2x + 2 voor loodrechte verlopen m_1m_2 = -1 de gradiënt van de gegeven lijn is 1/2 thre vereiste helling 1 / 2xxm_2 = -1 => m_2 = -2 dus we hebben coördinaten gegeven " "(9, -6) y- -6 = -2 (x-9) y + 6 = -2x + 18 y = -2x + 12
Wat is de vergelijking van de lijn die doorloopt (1,2) en is parallel aan de lijn waarvan de vergelijking 4x + y-1 = 0 is?
Y = -4x + 6 Kijk naar het diagram De gegeven lijn (rode kleurlijn) is - 4x + y-1 = 0 De vereiste lijn (groene kleurlijn) loopt door het punt (1,2) Stap - 1 Zoek de helling van de gegeven lijn. Het is in de vorm ax + by + c = 0 De helling is gedefinieerd als m_1 = (- a) / b = (- 4) / 1 = -4 Stap -2 De twee lijnen lopen parallel. Vandaar dat hun hellingen gelijk zijn. De helling van de vereiste lijn is m_2 = m_1 = -4 Stap - 3 De vergelijking van de vereiste lijn y = mx + c Waarm = -4 x = 1 y = 2 Vind c c + mx = y c + (- 4) 1 = 2 c-4 = 2 c = 2 + 4 = 6 Gebruik na kennen c de helling -4 en onderschep 6 om de vergelijking y = -4