Laat de initiële poolcoördinaat van A,
Gegeven initiële cartesiaanse coördinaat van A,
Dus we kunnen schrijven
Na
Initiële afstand van A tot B (-5,3)
uiteindelijke afstand tussen nieuwe positie van A (8, -2) en B (-5,3)
Dus verschil =
raadpleeg ook de link
socratic.org/questions/point-a-is-at-1-4-and-point-b-is-at-9-2-point-a-is-rotated-3pi-2-clockwise- over # 238.064
De vector vec A staat op een gecoördineerd vlak. Het vlak wordt vervolgens tegen de wijzers van de klok in geroteerd door phi.Hoe vind ik de componenten van vec A in termen van de componenten van vec A zodra het vliegtuig is geroteerd?
Zie hieronder De matrix R (alpha) roteert CCW elk punt in het xy-vlak over een hoek alpha over de oorsprong: R (alpha) = ((cos alpha, -sin alpha), (sin alpha, cos alpha)) Maar in plaats van CCW het vlak te roteren, roteert u CW de vector mathbf A om te zien dat in het oorspronkelijke xy-coördinatenstelsel de coördinaten ervan zijn: mathbf A '= R (-alpha) mathbf A impliceert mathbf A = R (alpha) mathbf A 'impliceert ((A_x), (A_y)) = ((cos alpha, -sin alpha), (sin alpha, cos alpha)) ((A'_x), (A'_y)) IOW, ik denk dat je redenering er uitziet goed.
Hoe vind je het volume van de vaste stof die wordt gegenereerd door het draaien van het gebied dat wordt begrensd door de krommen y = x ^ (2) -x, y = 3-x ^ (2) geroteerd rond de y = 4?
V = 685 / 32pi kubieke eenheden Maak eerst de grafieken. y_1 = x ^ 2-x y_2 = 3-x ^ 2 x-intercept y_1 = 0 => x ^ 2-x = 0 En we hebben dat {(x = 0), (x = 1):} Dus intercepts zijn (0,0) en (1,0) Haal de vertex: y_1 = x ^ 2-x => y_1 = (x-1/2) ^ 2-1 / 4 => y_1 - (- 1/4) = (x-1/2) ^ 2 Zo vertex is op (1/2, -1 / 4) Herhaal vorige: y_2 = 0 => 3-x ^ 2 = 0 En we hebben dat {(x = sqrt (3) ), (x = -sqrt (3)):} Dus intercepts zijn (sqrt (3), 0) en (-sqrt (3), 0) y_2 = 3-x ^ 2 => y_2-3 = -x ^ 2 Zo vertex is op (0,3) Resultaat: Hoe het volume te krijgen? We zullen de schijfmethode gebruiken! Deze methode is eenvoudig dat:
Wat is de vergelijking van de locus van punten op een afstand van sqrt (20) eenheden van (0,1)? Wat zijn de coördinaten van de punten op de lijn y = 1 / 2x + 1 op een afstand van sqrt (20) van (0, 1)?
Vergelijking: x ^ 2 + (y-1) ^ 2 = 20 Coördinaten van gespecificeerde punten: (4,3) en (-4, -1) Deel 1 De locus van punten op een afstand van sqrt (20) van (0 , 1) is de omtrek van een cirkel met radius sqrt (20) en midden op (x_c, y_c) = (0,1) De algemene vorm voor een cirkel met radiuskleur (groen) (r) en midden (kleur (rood) ) (x_c), kleur (blauw) (y_c)) is kleur (wit) ("XXX") (x-kleur (rood) (x_c)) ^ 2+ (y-kleur (blauw) (y_c)) ^ 2 = kleur (groen) (r) ^ 2 In dit geval kleur (wit) ("XXX") x ^ 2 + (y-1) ^ 2 = 20 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~