Antwoord:
Uitleg:
Als de focus van een parabool is (3,6) en de richting is y = 8, zoek dan de vergelijking van de parabool.
Laat (x0, y0) elk punt op de parabool zijn. Allereerst het vinden van de afstand tussen (x0, y0) en de focus. Vervolgens de afstand vinden tussen (x0, y0) en de regressie. Vergelijking van deze twee afstandsvergelijkingen en de vereenvoudigde vergelijking in x0 en y0 is een vergelijking van de parabool.
De afstand tussen (x0, y0) en (3,6) is
De afstand tussen (x0, y0) en de directrix, y = 8 is | y0- 8 |.
Vergelijking van de twee afstandsuitdrukkingen en vierkant aan beide zijden.
Alle voorwaarden vereenvoudigen en naar een kant brengen:
Schrijf de vergelijking met y0 aan één kant:
Deze vergelijking in (x0, y0) geldt voor alle andere waarden op de parabool en daarom kunnen we herschrijven met (x, y).
Dus, de vergelijking van de parabool met focus (3,6) en directrix is y = 8 is
Wat is de standaardvorm van de vergelijking van de parabool met een focus op (0,3) en een richtlijn van x = -2?
(y-3) ^ 2 = 4 (x + 1)> "vanaf elk punt" (x, y) "op de parabool" "de afstand tot de focus en de richting vanaf dit punt" "zijn gelijk" "met behulp van de" kleur (blauw) "afstandsformule dan" sqrt (x ^ 2 + (y-3) ^ 2) = | x + 2 | kleur (blauw) "vierkant aan beide zijden" x ^ 2 + (y-3) ^ 2 = (x + 2) ^ 2 annuleer (x ^ 2) + (y-3) ^ 2 = annuleer (x ^ 2) + 4x + 4 (y-3) ^ 2 = 4 (x + 1) grafiek {(y-3) ^ 2 = 4 (x + 1) [-10, 10, -5, 5]}
Wat is de standaardvorm van de vergelijking van de parabool met een focus op (-11,4) en een richtlijn van y = 13?
De vergelijking van parabool is y = -1 / 18 (x + 11) ^ 2 + 8.5; De focus ligt op (-11,4) en de regressie is y = 13. De vertex bevindt zich halverwege tussen focus en directrix. Dus vertex is op (-11, (13 + 4) / 2) of (-11,8.5). Omdat directrix zich achter de vertex bevindt, opent de parabool naar beneden en a is negatief. Vergelijking van parabool in vertex-vorm is y = a (x-h) ^ 2 + k; (h, k) is vertex. Hier h = -11, k = 8.5. Dus de vergelijking van parabool is y = a (x + 11) ^ 2 + 8,5; . De afstand van vertex tot richtlijn is D = 13-8.5 = 4.5 en D = 1 / (4 | a |) of | a | = 1 / (4D) = 1 / (4 * 4.5):. | a | = 1/18:. a = -1
Wat is de standaardvorm van de vergelijking van de parabool met een focus op (1, -2) en een richtlijn van y = 9?
Y = -1 / 22x ^ 2 + 1 / 11x + 38/11> "voor elk punt" (x, y) "op de parabool" "de afstand van" (x, y) "tot de focus en de richtliniaal" " zijn gelijk "" met de "color (blue)" afstandsformule "sqrt ((x-1) ^ 2 + (y + 2) ^ 2) = | y-9 | kleur (blauw) "vierkant aan beide zijden" (x-1) ^ 2 + (y + 2) ^ 2 = (y-9) ^ 2 x ^ 2-2x + 1 cancel (+ y ^ 2) + 4y + 4 = cancel (y ^ 2) -18y + 81 rArr-22y + 77 = x ^ 2-2x + 1 rArr-22y = x ^ 2-2x-76 rArry = -1 / 22x ^ 2 + 1 / 11x + 38 / 11larrcolor (rood) "in standaardvorm"