Zowel frequentie als golflengte zullen veranderen.
We zien een toename van de frequentie als de toegenomen toonhoogte die je beschreef. Naarmate de frequentie (pitch) toeneemt, wordt de golflengte korter volgens de universele golfvergelijking (
De snelheid van de golf zal niet veranderen, omdat deze alleen afhankelijk is van de eigenschappen van het medium waardoorheen de golf vaart (bijvoorbeeld temperatuur of luchtdruk, dichtheid van de vaste stof, zoutgehalte van water, …)
De amplitude of intensiteit van de golf wordt door onze oren waargenomen als de luidheid (denk "versterker"). Hoewel de amplitude van de golf niet toeneemt met de toonhoogte, is het waar dat onze oren verschillende frequenties op verschillende intensiteitsniveaus detecteren - dus het is mogelijk dat een hoogfrequent geluid ons luider lijkt dan een laagfrequent geluid van dezelfde amplitude.
Deze video heeft een goed overzicht van de wetenschap, wiskunde van geluid, frequentie en toonhoogte:
De intensiteit van een radiosignaal van het radiostation varieert omgekeerd als het kwadraat van de afstand tot het station. Stel dat de intensiteit 8000 eenheden is op een afstand van 2 mijl. Wat zal de intensiteit zijn op een afstand van 6 mijl?
(Appr.) 888.89 "eenheid." Laat ik, en d resp. geeft de intensiteit van het radiosignaal en de afstand in mijl) van de plaats van het radiostation aan. Dat wordt ons gegeven, ik prop 1 / d ^ 2 rArr I = k / d ^ 2, of, Id ^ 2 = k, kne0. Wanneer ik = 8000, d = 2:. k = 8000 (2) ^ 2 = 32.000. Vandaar, Id ^ 2 = k = 32000 Nu, om te vinden ik ", wanneer" d = 6:. I = 32000 / d ^ 2 = 32000/36 ~~ 888,89 "eenheid".
Water lekt uit een omgekeerde conische tank met een snelheid van 10.000 cm3 / min, terwijl water met constante snelheid in de tank wordt gepompt. Als de tank een hoogte van 6 m heeft en de diameter bovenaan 4 m is en als het waterniveau stijgt met een snelheid van 20 cm / min wanneer de hoogte van het water 2 m is, hoe vindt u dan de snelheid waarmee het water in de tank wordt gepompt?
Laat V het volume water in de tank zijn, in cm ^ 3; laat h de diepte / hoogte van het water zijn, in cm; en laat r de straal zijn van het oppervlak van het water (bovenaan), in cm. Omdat de tank een omgekeerde kegel is, is ook de massa water. Aangezien de tank een hoogte heeft van 6 m en een straal bovenaan 2 m, impliceert dezelfde driehoek dat frac {h} {r} = frac {6} {2} = 3 zodat h = 3r. Het volume van de omgekeerde kegel van water is dan V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Onderscheid nu beide zijden met betrekking tot tijd t (in minuten) om frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} te krijgen (de kettin
Wanneer een polynoom wordt gedeeld door (x + 2), is de rest -19. Wanneer hetzelfde polynoom wordt gedeeld door (x-1), is de rest 2, hoe bepaal je de rest wanneer het polynoom wordt gedeeld door (x + 2) (x-1)?
We weten dat f (1) = 2 en f (-2) = - 19 van de Restantstelling. Vind nu de rest van polynoom f (x) wanneer gedeeld door (x-1) (x + 2). De rest zal zijn van de vorm Ax + B, omdat het de rest is na deling door een kwadratische vorm. We kunnen nu de deler vermenigvuldigen maal het quotiënt Q ... f (x) = Q (x-1) (x + 2) + Ax + B Volgende, voeg 1 in en -2 voor x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Oplossen van deze twee vergelijkingen, we krijgen A = 7 en B = -5 Rest = Ax + B = 7x-5