Antwoord:
Oplossing in veel detail zodat u kunt zien waar alles vandaan komt.
Gebiedsverhoging is
Uitleg:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Origineel gebied
Nieuw gebied
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
De verandering uitdrukken als een fractie van het oorspronkelijke gebied dat we hebben:
Weg met de
Dit is hetzelfde als:
Dit is hetzelfde als:
Maar
Twee parallelle koorden van een cirkel met lengten van 8 en 10 dienen als basis van een trapezium ingeschreven in de cirkel. Als de lengte van een straal van de cirkel 12 is, wat is dan het grootst mogelijke oppervlak van een dergelijke beschreven ingeschreven trapezium?
72 * sqrt (2) + 9 * sqrt (119) ~ = 200.002 Overweeg Fign. 1 en 2 Schematisch kunnen we een parallellogram ABCD in een cirkel plaatsen, en op voorwaarde dat zijden AB en CD akkoorden zijn van de cirkels, op de manier van figuur 1 of figuur 2. De voorwaarde dat de zijden AB en CD moeten zijn akkoorden van de cirkel impliceert dat de ingeschreven trapezoïde een gelijkbenige moet zijn omdat de diagonalen van de trapezoïde (AC en CD) gelijk zijn omdat A hat BD = B hat AC = B hatD C = A hat CD en de lijn loodrecht op AB en CD passerend door het midden E doorsnijdt deze akkoorden (dit betekent dat AF = BF en CG = DG en
Water lekt uit een omgekeerde conische tank met een snelheid van 10.000 cm3 / min, terwijl water met constante snelheid in de tank wordt gepompt. Als de tank een hoogte van 6 m heeft en de diameter bovenaan 4 m is en als het waterniveau stijgt met een snelheid van 20 cm / min wanneer de hoogte van het water 2 m is, hoe vindt u dan de snelheid waarmee het water in de tank wordt gepompt?
Laat V het volume water in de tank zijn, in cm ^ 3; laat h de diepte / hoogte van het water zijn, in cm; en laat r de straal zijn van het oppervlak van het water (bovenaan), in cm. Omdat de tank een omgekeerde kegel is, is ook de massa water. Aangezien de tank een hoogte heeft van 6 m en een straal bovenaan 2 m, impliceert dezelfde driehoek dat frac {h} {r} = frac {6} {2} = 3 zodat h = 3r. Het volume van de omgekeerde kegel van water is dan V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Onderscheid nu beide zijden met betrekking tot tijd t (in minuten) om frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} te krijgen (de kettin
Cirkel A heeft een straal van 2 en een middelpunt van (6, 5). Cirkel B heeft een straal van 3 en een middelpunt van (2, 4). Als cirkel B wordt vertaald door <1, 1>, overlapt cirkel A dan? Zo nee, wat is de minimale afstand tussen punten op beide cirkels?
"cirkels overlappen"> "wat we hier moeten doen is de afstand (d)" "vergelijken tussen de middelpunten en de som van de radii" • "als de som van radii"> d "dan cirkels elkaar overlappen" • "als som van radii "<d" en dan geen overlapping "" voor het berekenen van d dat we nodig hebben om het nieuwe centrum "" van B te vinden na de gegeven vertaling "" onder de vertaling "<1,1> (2,4) tot (2 + 1, 4 + 1) tot (3,5) larrcolor (rood) "nieuw centrum van B" "om te berekenen d gebruik de" color (blue)