Een voorwerp met een massa van 8 kg bevindt zich op een helling op een helling van pi / 8. Als het object met een kracht van 7 N de oprijplaat wordt opgeduwd, wat is dan de minimale statische-wrijvingscoëfficiënt die nodig is om het object op de plaats te houden?
Totale kracht die op het voorwerp neerwaarts langs het vlak werkt is mg sin ((pi) / 8) = 8 * 9,8 * sin ((pi) / 8) = 30N En de uitgeoefende kracht is 7N omhoog in het vlak. De netto kracht op het object is dus 30-7 = 23N omlaag langs het vlak. Dus een statische frictioanl-kracht die moet werken om deze hoeveelheid kracht in balans te houden, zou naar boven moeten werken in het vlak. Hier is de statische wrijvingskracht die kan werken mu mg cos ((pi) / 8) = 72,42 mu N (waarbij mu de coëfficiënt van de statische wrijvingskracht is) Dus 72,42 mu = 23 of, mu = 0,32
Een voorwerp met een massa van 16 kg ligt stil op een oppervlak en comprimeert een horizontale veer met 7/8 m. Als de constante van de veer 12 (kg) / s ^ 2 is, wat is dan de minimale waarde van de wrijvingscoëfficiënt van het oppervlak?
0.067 De kracht uitgeoefend door een veer met veerconstante k en na een compressie van x wordt gegeven als -kx. Omdat wrijving altijd in de tegenovergestelde richting staat ten opzichte van de uitgeoefende kracht, hebben we dus muN = kx, waarbij N de normaalkracht is = mg vandaar, mu = (kx) / (mg) = (12 * 7/8) / (16 * 9,8) ~~ 0.067
Een veer met een constante van 5 (kg) / s ^ 2 ligt op de grond met een uiteinde bevestigd aan een muur. Een voorwerp met een massa van 6 kg en een snelheid van 12 m / s botst met en comprimeert de veer totdat deze niet meer beweegt. Hoeveel zal de lente comprimeren?
12 m We kunnen energiebesparing gebruiken. aanvankelijk; Kinetische energie van de massa: 1 / 2mv ^ 2 = 1/2 * 6 * 12 ^ 2 J Eindelijk: kinetische energie van de massa: 0 potentiële energie: 1 / 2kx ^ 2 = 1/2 * (5 (kg) / s ^ 2) x ^ 2 gelijkwaardig, krijgen we: 1/2 * 6 * 12 ^ 2 J = 1/2 * (5 (kg) / s ^ 2) x ^ 2 => x ~~ 12m * Ik zou zo blij als k en m hetzelfde waren.