Antwoord:
Uitleg:
# "de vergelijking van een lijn in" kleur (blauw) "hellingsintercept" # is.
# • kleur (wit) (x) y = mx + b #
# "waar m de helling is en b het y-snijpunt" #
# y = 2 / 7x "staat in deze vorm" #
# "met helling m" = 2/7 "en" b = 0 #
# "gezien de vergelijking van een lijn met helling m dan de" #
# "vergelijking van een lijn loodrecht daarop is" #
# • kleur (wit) (x) m_ (kleur (rood) "loodrecht") = - 1 / m #
#rArrm _ ("haaks") = - 1 / (07/02) = - 7/2 #
# rArry = -7 / 2x + blarrcolor (blauw) "is de gedeeltelijke vergelijking" #
# "om b substituut" (-2,9) te vinden "in de gedeeltelijke vergelijking" #
# 9 = 7 + brArrb = 9-7 = 2 #
# rArry = -7 / 2x + 2larrcolor (rood) "loodrechte vergelijking" #
Antwoord:
Zie de onderstaande details
Uitleg:
De algemene vergelijking van een stright-regel is
waar m de helling is en n y-snijpunt is
We weten ook dat als m de helling is, dan
De reuqested-vergelijking is
We weten niet wat de n-waarde is, maar ze vragen om een rechte lijn die doorloopt
Termen omzetten die we hebben gevonden
Zie onderstaande grafiek (A is het opgegeven punt)
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
Wat is de vergelijking van de lijn die passeert (0, -1) en staat loodrecht op de lijn die de volgende punten passeert: (8, -3), (1,0)?
7x-3y + 1 = 0 Helling van de lijn die twee punten met elkaar verbindt (x_1, y_1) en (x_2, y_2) wordt gegeven door (y_2-y_1) / (x_2-x_1) of (y_1-y_2) / (x_1-x_2 ) Aangezien de punten (8, -3) en (1, 0) zijn, wordt de helling van de lijn die hen verbindt gegeven door (0 - (- 3)) / (1-8) of (3) / (- 7) ie -3/7. Product van de helling van twee loodrechte lijnen is altijd -1. Dus de lijnlijn loodrecht daarop is 7/3 en daarom kan de vergelijking in hellingsvorm worden geschreven als y = 7 / 3x + c Als dit door het punt (0, -1) gaat, zetten we deze waarden in bovenstaande vergelijking, we krijgen -1 = 7/3 * 0 + c of c = 1 Daarom i
Wat is de vergelijking van de lijn die passeert (0, -1) en staat loodrecht op de lijn die de volgende punten passeert: (13,20), (16,1)?
Y = 3/19 * x-1 De helling van de lijn loopt door (13,20) en (16,1) is m_1 = (1-20) / (16-13) = - 19/3 We kennen de toestand van perpedicularity tussen twee lijnen is product van hun hellingen gelijk aan -1: .m_1 * m_2 = -1 of (-19/3) * m_2 = -1 of m_2 = 3/19 Dus de lijn die passeert (0, -1 ) is y + 1 = 3/19 * (x-0) of y = 3/19 * x-1 grafiek {3/19 * x-1 [-10, 10, -5, 5]} [Ans]