Antwoord:
Deze verklaring geldt voor alle, behalve twee van de priemgetallen, Noemers van
Uitleg:
Om een terminerende decimaal te vormen, moet de noemer van een breuk een macht zijn van
De priemgetallen zijn
Enkel en alleen
De andere priemgetallen geven allemaal terugkerende decimalen:
Som van de teller en de noemer van een breuk is 3 minder dan tweemaal de noemer. Als de teller en de noemer beide met 1 verminderen, wordt de teller de helft van de noemer. Bepaal de breuk?
4/7 Stel dat de breuk a / b is, teller a, noemer b. Som van de teller en de noemer van een breuk is 3 minder dan tweemaal de noemer a + b = 2b-3 Als de teller en de noemer beide met 1 verminderen, wordt de teller de helft van de noemer. a-1 = 1/2 (b-1) Nu doen we de algebra. We beginnen met de vergelijking die we net hebben geschreven. 2 a- 2 = b-1 b = 2a-1 Uit de eerste vergelijking, a + b = 2b-3 a = b-3 We kunnen hier b = 2a-1 in plaatsen. a = 2a - 1 - 3 -a = -4 a = 4 b = 2a-1 = 2 (4) -1 = 7 Breuk is a / b = 4/7 Controle: * Som van de teller (4) en de noemer (7) van een breuk is 3 minder dan tweemaal de noemer * (4) (7)
Er is een fractie die zo is dat als 3 wordt toegevoegd aan de teller, de waarde 1/3 zal zijn, en als 7 wordt afgetrokken van de noemer, is de waarde ervan 1/5. Wat is de breuk? Geef het antwoord in de vorm van een breuk.
1/12 f = n / d (n + 3) / d = 1/3 => n = d / 3 - 3 n / (d-7) = 1/5 => n = d / 5 - 7/5 => d / 3 - 3 = d / 5 - 7/5 => 5 d - 45 = 3 d - 21 "(vermenigvuldiging aan beide zijden met 15)" => 2 d = 24 => d = 12 => n = 1 => f = 1/12
De som van de teller en de noemer van een breuk is 12. Als de noemer met 3 wordt verhoogd, wordt de breuk 1/2. Wat is de breuk?
Ik kreeg 5/7 Laten we onze breuk x / y noemen, we weten dat: x + y = 12 en x / (y + 3) = 1/2 van de seconde: x = 1/2 (y + 3) naar de eerste: 1/2 (y + 3) + y = 12 y + 3 + 2y = 24 3y = 21 y = 21/3 = 7 en dus: x = 12-7 = 5