Antwoord:
De vijf nummers zijn:
#58, 60, 62, 64, 66#
Uitleg:
Geef het middelste nummer aan met
# N-4 # ,# N-2 # ,# N # ,# N + 2 # ,# N + 4 #
Zo:
# 310 = (n-4) + (n-2) + n + (n + 2) + (n + 4) = 5n #
Verdeel beide uiteinden door
#n = 62 #
Dus de vijf nummers zijn:
#58, 60, 62, 64, 66#
Het verdrievoudigen van de grootste van twee opeenvolgende even gehele getallen geeft hetzelfde resultaat als het aftrekken van 10 van het mindere even gehele getal. Wat zijn de gehele getallen?
Ik vond -8 en -6 Noem je gehele getallen: 2n en 2n + 2 heb je: 3 (2n + 2) = 2n-10 herschikken: 6n + 6 = 2n-10 6n-2n = -6-10 4n = -16 n = -16 / 4 = -4 Dus de gehele getallen moeten zijn: 2n = 2 (-4) = - 8 2n + 2 = 2 (-4) + 2 = -6
De formule kennen tot de som van de N-getallen a) wat is de som van de eerste N opeenvolgende blokhele getallen, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Som van de eerste N opeenvolgende kubieke gehele getallen Sigma_ (k = 1) ^ N k ^ 3?
Voor S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 We hebben sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 oplossing voor sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni maar sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3
"Lena heeft 2 opeenvolgende gehele getallen.Ze merkt dat hun som gelijk is aan het verschil tussen hun vierkanten. Lena kiest nog eens 2 opeenvolgende gehele getallen en merkt hetzelfde op. Bewijs algebra dat dit geldt voor elke 2 opeenvolgende gehele getallen?
Zie de toelichting alstublieft. Bedenk dat de opeenvolgende gehele getallen met 1 verschillen. Dus als m één geheel getal is, moet het volgende gehele getal n + 1 zijn. De som van deze twee gehele getallen is n + (n + 1) = 2n + 1. Het verschil tussen hun vierkanten is (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, zoals gewenst! Voel de vreugde van wiskunde.!