Helling =
(
x1 is het meest linkse punt, x2 is het andere, en y1 / y2 zijn de bijbehorende y-coördinaten. Ook, als je het niet weet, wordt een punt (A, B) gegeven in de vorm (x-coördinaat, y-coördinaat)
Dus de helling van deze lijn is
Zodat u weet dat de feitelijke regel die door deze punten gaat, is
De vergelijking van een lijn is 2x + 3y - 7 = 0, vind: - (1) helling van lijn (2) de vergelijking van een lijn loodrecht op de gegeven lijn en passeert de kruising van de lijn x-y + 2 = 0 en 3x + y-10 = 0?
-3x + 2y-2 = 0 kleur (wit) ("ddd") -> kleur (wit) ("ddd") y = 3 / 2x + 1 Eerste deel in veel detail dat aantoont hoe de eerste beginselen werken. Eenmaal hieraan gebruikt en met behulp van snelkoppelingen, gebruikt u veel minder regels. kleur (blauw) ("Bepaal het snijpunt van de beginvergelijkingen") x-y + 2 = 0 "" ....... Vergelijking (1) 3x + y-10 = 0 "" .... Vergelijking ( 2) Trek x af van beide zijden van Eqn (1) en geef -y + 2 = -x Vermenigvuldig beide zijden met (-1) + y-2 = + x "" .......... Vergelijking (1_a ) Gebruik Eqn (1_a) substituut voor x in Eqn
Lijn A en lijn B zijn parallel. De helling van lijn A is -2. Wat is de waarde van x als de helling van lijn B 3x + 3 is?
X = -5 / 3 Laat m_A en m_B de gradiënten van respectievelijk lijn A en B zijn, als A en B evenwijdig zijn, dan m_A = m_B Dus we weten dat -2 = 3x + 3 We moeten herschikken om x te vinden - 2-3 = 3x + 3-3 -5 = 3x + 0 (3x) / 3 = x = -5 / 3 Bewijs: 3 (-5/3) + 3 = -5 + 3 = -2 = m_A
Bewijs dat, gegeven een lijn en punt niet op die lijn, er precies één lijn is die dat punt loodrecht door die lijn passeert? Je kunt dit wiskundig of door constructie doen (de oude Grieken deden dit)?
Zie hieronder. Laten we aannemen dat de gegeven lijn AB is, en het punt is P, dat niet op AB staat. Laten we nu aannemen dat we een haakse PO op AB hebben getekend. We moeten bewijzen dat deze PO de enige lijn is die door P loopt en loodrecht op AB staat. Nu zullen we een constructie gebruiken. Laten we een nieuwe loodrechte pc bouwen op AB vanaf punt P. Nu het bewijs. We hebben OP loodrecht AB [Ik kan het loodrechte teken niet gebruiken, hoe oud het is] En, ook, PC loodrecht AB. Dus OP || PC. [Beide zijn loodlijnen op dezelfde regel.] Nu hebben zowel OP als pc punt P gemeen en zijn ze parallel. Dat betekent dat ze zouden