Antwoord:
Vertex: #(-2,17)#
Uitleg:
Ons doel zal zijn om de gegeven vergelijking om te zetten in "vertex-vorm":
#color (wit) ("XXX") y = m (x-a) ^ 2 + b # met vertex op # (A, b) #
Gegeven
#color (wit) ("XXX") y = -2x ^ 2-8x + 9 #
Pak het # M # factor
#color (wit) ("XXX") y = (- 2) (x ^ 2 + 4x) + 9 #
Voltooi het vierkant:
#color (wit) ("XXX") y = (kleur (blauw) (- 2)) (x ^ 2 + 4xcolor (blauw) (+ 4)) + 9color (rood) (+8) #
Herschrijf de #X# expressie als een binomiaal vierkant
#color (wit) ("XXX") y = (- 2) (x + 2) ^ 2 + 17 #
Converteer de rechthoekige binomiaal naar de vorm # (X-a) #
#color (wit) ("XXX") y = (- 2) (x - (- 2)) + 17 #
dat is de vertex-vorm met vertex op #(-2,17)#
grafiek {-2x ^ 2-8x + 9 -16.13, 15.93, 6, 22.01}