Antwoord:
Vermenigvuldig de kansen om de waarschijnlijkheid te vinden dat ze allebei het doel raken
Uitleg:
Dit zijn
Wanneer twee evenementen,
# P ("A en B") = P ("A") * P ("B") #
Let daar op
# P ("A en B") = 0.8 * 0.7 = 0.56 #
Dat is gelijk aan
Een jongen heeft 20% kans om op een doelwit te raken. Laat p de kans aanduiden om voor het eerst het doelwit te raken bij de nde proef. Als p voldoet aan de ongelijkheid 625p ^ 2 - 175p + 12 <0 dan is de waarde van n?
N = 3 p (n) = "Voor de 1e keer op de n-de proef slaan" => p (n) = 0.8 ^ (n-1) * 0.2 "Grens van de ongelijkheid" 625 p ^ 2 - 175 p + 12 = 0 "" is de oplossing van een kwadratische vergelijking in "p": "" schijf: "175 ^ 2 - 4 * 12 * 625 = 625 = 25 ^ 2 => p = (175 pm 25) / 1250 = 3/25 "of" 4/25 "" Dus "p (n)" is negatief tussen deze twee waarden. " p (n) = 3/25 = 0.8 ^ (n-1) * 0.2 => 3/5 = 0.8 ^ (n-1) => log (3/5) = (n-1) log (0.8) = > n = 1 + log (3/5) / log (0.8) = 3.289 .... p (n) = 4/25 = ... => n = 1 + log (4/5) /
Twee schutters schieten tegelijk op een doelwit. Jiri raakt het doelwit 70% van de tijd en Benita raakt het doelwit 80% van de tijd. Hoe bepaal je de kans dat ze allebei het doelwit missen?
6% De kans op twee onafhankelijke gebeurtenissen is het product van elke kans. Jiri faalt 0.3 keer, en Benita 0.2. De kans dat beide falen is 0.3xx0.2 = 0.06 = 6%
Twee schutters schieten tegelijk op een doelwit. Jiri raakt het doelwit 70% van de tijd en Benita raakt het doelwit 80% van de tijd. Hoe bepaal je de kans dat Jiri hem raakt, maar Benita mist?
Waarschijnlijkheid is 0,14. Disclaimer: Het is lang geleden dat ik statistieken heb gemaakt, ik heb hopelijk de roest eraf geschud maar hopelijk zal iemand me een dubbele controle geven. Kans op Benita ontbreekt = 1 - Kans dat Benita slaat. P_ (Bmiss) = 1 - 0.8 = 0.2 P_ (Jhit) = 0.7 We willen de kruising van deze gebeurtenissen. Omdat deze gebeurtenissen onafhankelijk zijn, gebruiken we de vermenigvuldigingsregel: P_ (Bmiss) nnn P_ (Jhit) = P_ (Bmiss) * P_ (Jhit) = 0.2 * 0.7 = 0.14