Antwoord:
Uitleg:
Dus we weten dat om een hondenbandana te maken we 12 inch materiaal moeten hebben.
Allereerst zullen we yards in inches converteren
Werf: inches
Notitie:
Nu zullen we berekenen hoeveel bandana's
Bandana: hoeveelheid
Stel dat je meerdere pennen in een discountwinkel koopt. Alle pennen hebben dezelfde prijs en je koopt als de gewone man de kosten (in centen) van elke pen. Het totaal is $ 1,44. Hoeveel pennen heb je gekocht?
12 Aantal gekochte pennen = prijs in centen = x Aantal pennen * prijs = eindprijs = 1,44 $ = 144 cents x ^ 2 = 144 cent rarr x = sqrt144 = 12 cents RARr 12 pennen
De halfwaardetijd van een bepaald radioactief materiaal is 75 dagen. Een initiële hoeveelheid van het materiaal heeft een massa van 381 kg. Hoe schrijf je een exponentiële functie die het verval van dit materiaal modelleert en hoeveel radioactief materiaal er na 15 dagen overblijft?
Halveringstijd: y = x * (1/2) ^ t met x als beginbedrag, t als "tijd" / "halveringstijd", en y als het uiteindelijke bedrag. Om het antwoord te vinden, plug de formule in: y = 381 * (1/2) ^ (15/75) => y = 381 * 0.87055056329 => y = 331.679764616 Het antwoord is ongeveer 331.68
De halfwaardetijd van een bepaald radioactief materiaal is 85 dagen. Een initiële hoeveelheid van het materiaal heeft een massa van 801 kg. Hoe schrijf je een exponentiële functie die het verval van dit materiaal modelleert en hoeveel radioactief materiaal er overblijft na 10 dagen?
Laat m_0 = "Initiële massa" = 801kg "op" t = 0 m (t) = "Massa op tijdstip t" "De exponentiële functie", m (t) = m_0 * e ^ (kt) ... (1) "where" k = "constant" "Halveringstijd" = 85days => m (85) = m_0 / 2 Nu wanneer t = 85days dan m (85) = m_0 * e ^ (85k) => m_0 / 2 = m_0 * e ^ (85k) => e ^ k = (1/2) ^ (1/85) = 2 ^ (- 1/85) Als we de waarde van m_0 en e ^ k in (1) plaatsen, krijgen we m (t) = 801 * 2 ^ (- t / 85) Dit is de functie.die ook in exponentiële vorm kan worden geschreven als m (t) = 801 * e ^ (- (tlog2) / 85) Nu blijft de