Hoe differentieer je impliciet 9 = e ^ (y ^ 2-y) / e ^ x + y-xy?

Hoe differentieer je impliciet 9 = e ^ (y ^ 2-y) / e ^ x + y-xy?
Anonim

# 9 = e ^ (y ^ 2-y) / e ^ x + y - xy #

# 9 = e ^ (y ^ 2-y) * e ^ (- x) + y - xy #

# 9 = e ^ (y ^ 2-y-x) + y - xy #

Onderscheid ten opzichte van x.

De afgeleide van de exponentiële is zelf, keer de afgeleide van de exponent. Onthoud dat telkens wanneer u iets onderscheidt dat y bevat, de kettingregel u een factor y geeft.

# 0 = e ^ (y ^ 2-y-x) (2yy '-y'-1) + y' - (xy '+ y) #

# 0 = e ^ (y ^ 2-y-x) (2yy '-y'-1) + y' - xy'-y #

Los nu op voor y '. Hier is een begin:

# 0 = 2yy'e ^ (y ^ 2-y-x) -y'e ^ (y ^ 2-y-x) -e ^ (y ^ 2-y-x) + y '- xy'-y #

Verkrijg alle termen met y 'aan de linkerkant.

# -2yy'e ^ (y ^ 2-y-x) + y'e ^ (y ^ 2-y-x) - y '+ xy' = - e ^ (y ^ 2-y-x) -y #

Factor out y '.

Verdeel beide kanten door wat er tussen haakjes staat nadat je factor hebt.