Antwoord:
Uitleg:
De omtrek wordt gevonden door de drie zijden toe te voegen
Omdat de drie zijden van de driehoek de stelling van Pythagoras volgen
Deze driehoek is een rechthoekige driehoek.
Dit maakt de basis = 4 en de hoogte = 3
De Pythagorean Triplets omvatten
De basis van een driehoek van een bepaald gebied varieert omgekeerd als de hoogte. Een driehoek heeft een basis van 18 cm en een hoogte van 10 cm. Hoe vind je de hoogte van een driehoek van hetzelfde oppervlak en met een basis van 15 cm?
Hoogte = 12 cm Het oppervlak van een driehoek kan worden bepaald met het vergelijkingsgebied = 1/2 * basis * hoogte Zoek het gebied van de eerste driehoek door de metingen van de driehoek in de vergelijking te plaatsen. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 Laat de hoogte van de tweede driehoek = x. Dus de gebiedsvergelijking voor de tweede driehoek = 1/2 * 15 * x Aangezien de gebieden gelijk zijn, 90 = 1/2 * 15 * x Tijden beide zijden met 2. 180 = 15x x = 12
Het langere been van een rechthoekige driehoek is 3 inch meer dan 3 keer de lengte van het kortere been. Het gebied van de driehoek is 84 vierkante inch. Hoe vind je de omtrek van een rechthoekige driehoek?
P = 56 vierkante inch. Zie onderstaande figuur voor een beter begrip. c = 3b + 3 (bc) / 2 = 84 (b. (3b + 3)) / 2 = 84 3b ^ 2 + 3b = 84xx2 3b ^ 2 + 3b-168 = 0 Oplossing van de kwadratische vergelijking: b_1 = 7 b_2 = -8 (onmogelijk) Dus, b = 7 c = 3xx7 + 3 = 24 a ^ 2 = 7 ^ 2 + 24 ^ 2 a ^ 2 = 625 a = sqrt (625) = 25 P = 7 + 24 + 25 = 56 vierkante centimeter
De omtrek van een vierkant is 12 cm groter dan dat van een ander vierkant. Het gebied overschrijdt het gebied van het andere plein met 39 vierkante cm. Hoe vind je de omtrek van elk vierkant?
32cm en 20cm laat kant van groter vierkant een kleiner vierkant zijn b 4a - 4b = 12 dus a - b = 3 a ^ 2 - b ^ 2 = 39 (a + b) (ab) = 39 delen de 2 vergelijkingen die we verkrijg een + b = 13 nu voeg je een + b en ab toe, we krijgen 2a = 16 a = 8 en b = 5 de omtrekken zijn 4a = 32cm en 4b = 20cm