Antwoord:
Laten we dit probleem oplossen door beide punten in een paraboolvergelijking te substitueren:
Uitleg:
- Allereerst, laten we vervangen
#(0,0)# :
Zo verkrijgen we de onafhankelijke term in vergelijking, krijgen
- Laten we nu de top vervangen,
#(-4, 16)# . We krijgen:
Nu hebben we een relatie tussen
- Voor elke parabool kan de top worden verkregen door:
In ons geval:
- Ten slotte moeten we het systeem oplossen dat wordt gegeven door:
Vervangen
En tenslotte:
Op deze manier is de paraboolvergelijking:
Wat is de vergelijking van de parabool met een hoekpunt op (-15, -4) en passeert door punt (15,5)?
Y = 1/100 (x + 15) ^ 2-4 De vergelijking van een parabool in kleur (blauw) "vertex-vorm" is. kleur (rood) (balk (ul (| kleur (wit) (2/2) kleur (zwart) (y = a (xh) ^ 2 + k) kleur (wit) (2/2) |))) waarbij ( h, k) zijn de coördinaten van de vertex en a is een constante. "hier" (h, k) = (- 15, -4) rArry = a (x + 15) ^ 2-4 "om een punt te vinden waarop de parabool door" "gaat met" (15,5) "dat is x = 15 en y = 5 "rArr5 = a (15 + 15) ^ 2-4 rArr900a = 9rArra = 1/100 rArry = 1/100 (x + 15) ^ 2-4larrcolor (rood)" in vertex-vorm " grafiek {1/100 (x + 15) ^ 2-4 [-20, 20
Wat is de vergelijking van de parabool met een hoekpunt op (-2, -4) en passeert door punt (-3, -5)?
Y = - (x + 2) ^ 2-4 De algemene vertexvorm van een parabool met vertex bij (a, b) is kleur (wit) ("XXX") y = m (xa) ^ 2 + bcolor (wit) ("XXX") voor sommige constante m Daarom is een parabool met vertex bij (-2, -4) van de vorm: kleur (wit) ("XXX") y = m (x + 2) ^ 2-4color (wit ) ("XXX") voor sommige constante m Als (x, y) = (- 3, -5) een punt op deze paraboolkleur is (wit) ("XXX") - 5 = m (-3 + 2) ^ 2-4 kleur (wit) ("XXX") - 5 = m - 4 kleur (wit) ("XXX") m = -1 en de vergelijking is y = 1 (x + 2) ^ 2-4 grafiek {- (x + 2) ^ 2-4 [-6.57, 3.295, -7.36, -2.43
Wat is de vergelijking van de parabool met een hoekpunt op (2, -5) en passeert door punt (-1, -2)?
De vergelijking van parabool is y = 1/3 * (x-2) ^ 2-5 De vergelijking van parabool met vertex op (2, -5) is y = a * (x-2) ^ 2-5. Het passeert (-1, -2) So -2 = a * (- 1-2) ^ 2-5 of a = 1/3. Vandaar dat de vergelijking van parabool is y = 1/3 * (x-2) ^ 2-5 grafiek {1/3 (x-2) ^ 2-5 [-20, 20, -10, 10]}