Antwoord:
Uitleg:
# e ^ (ix) = cos (x) + i sin (x) #
#cos (-x) = cos (x) #
#sin (-x) = -sin (x) #
Zo:
# e ^ (ix) -e ^ (- ix) = (cos (x) + i sin (x)) - (cos (-x) + i sin (-x)) #
# = (cos (x) + i sin (x)) - (cos (x) -i sin (x)) = 2i sin (x) #
En:
# e ^ (ix) + e ^ (- ix) = (cos (x) + i sin (x)) + (cos (-x) + i sin (-x)) #
# = (cos (x) + i sin (x)) + (cos (x) -i sin (x)) = 2 cos (x) #
Zo:
# (e ^ (ix) -e ^ (- ix)) / (ie ^ (ix) + ie ^ (- ix)) = (2i sin (x)) / (2i cos (x)) = sin (x) / cos (x) = tan (x) #
Gebruik ratio en verhouding ... help me deze op te lossen. 12 mijl is ongeveer gelijk aan 6 kilometer. (a) Hoeveel kilometer zijn gelijk aan 18 mijl? (b) Hoeveel mijlen zijn gelijk aan 42 kilometer?
A 36 km B. 21 mijl De verhouding is 6/12, die kan worden teruggebracht tot 1 mijl / 2 km dus (2 km) / (1 m) = (x km) / (18 m) Vermenigvuldig beide zijden met 18 mijl ( 2km) / (1m) xx 18 m = (x km) / (18 m) xx 18 m de kilometers verdelen elkaar en verlaten 2 km xx 18 = x 36 km = x de verhouding rond voor deel b geeft (1 m) / (2 km) = (xm) / (42 km) Vermenigvuldig beide zijden met 42 km (1 m) / (2 km) xx 42 km = (xm) / (42 km) xx 42 km De km verdelen zich 21 m = xm
Een lijn met de beste fit voorspelt dat wanneer x gelijk is aan 35, y gelijk is aan 34,785, maar y gelijk is aan 37. Wat is in dit geval de rest?
2.215 Residu wordt gedefinieerd als e = y - hat y = 37 - 34.785 = 2.215
Wat zijn kenmerken van de grafiek van de functie f (x) = (x + 1) ^ 2 + 2? Vink alles aan wat van toepassing is. Het domein bestaat uit echte cijfers. Het bereik is alle reële getallen groter dan of gelijk aan 1. Het y-snijpunt is 3. De grafiek van de functie is 1 eenheid omhoog en
Eerste en derde zijn waar, tweede is fout, vierde is onvoltooid. - Het domein is inderdaad alle echte cijfers. Je kunt deze functie herschrijven als x ^ 2 + 2x + 3, wat een polynoom is, en als dusdanig domein mathbb {R} heeft. Het bereik is niet allemaal reëel getal groter dan of gelijk aan 1, omdat het minimum 2 is. feit. (x + 1) ^ 2 is een horizontale vertaling (een eenheid over) van de "strandard" parabool x ^ 2, die een bereik [0, infty) heeft. Wanneer u 2 toevoegt, verschuift u de grafiek verticaal met twee eenheden, dus het u-bereik is [2, infty) Om het y-snijpunt te berekenen, plugt u gewoon x = 0 in