Antwoord:
Uitleg:
Het formaat van standaardformulier voor een vergelijking van een lijn is
De vergelijking die we hebben,
Het eerste dat u moet doen, is het distribueren van het
Laten we nu aftrekken
Omdat de vergelijking moet zijn
Deze vergelijking is nu in standaardvorm.
Antwoord:
Uitleg:
# "de vergelijking van een regel in standaardvorm is." #
#color (rood) (bar (ul (| kleur (wit) (2/2) kleur (zwart) (Ax + By = C) kleur (wit) (2/2) |))) #
# "waarbij A een positief geheel getal is en B, C gehele getallen zijn" #
# "herschikt" y + 7 = -2 / 5 (x-10) "in dit formulier" #
# Y + 7 = 2 / 5x + 4larrcolor (blauw) "distribueren" #
# rArry = 2 / 5x-3larrcolor (blauw) "verzamelen als termen" #
# "vermenigvuldig door met 5" #
# RArr5y = 2x-15 #
# rArr2x-5y = 15larrcolor (rood) "in standaardvorm" #
De Main Street Market verkoopt sinaasappelen voor $ 3,00 voor vijf pond en appels voor $ 3,99 voor drie pond. De Off Street Market verkoopt sinaasappels voor $ 2,59 voor vier pond en appels voor $ 1,98 voor twee pond. Wat is de eenheidsprijs voor elk artikel in elke winkel?
Zie een oplossingsprocedure hieronder: Main Street Market: Sinaasappels - Laten we de eenheidsprijs noemen: O_m O_m = ($ 3,00) / (5 lb) = ($ 0,60) / (lb) = $ 0,60 per pond Appelen - Laten we de eenheidsprijs noemen: A_m A_m = ($ 3,99) / (3 lb) = ($ 1,33) / (lb) = $ 1,33 per pond Off Street Market: Sinaasappels - Laten we de eenheidsprijs noemen: O_o O_o = ($ 2,59) / (4 lb) = ($ 0,65) / (lb) = $ 0,65 per pond Appels - Laten we de eenheidsprijs noemen: A_o A_o = ($ 1,98) / (2 lb) = ($ 0,99) / (lb) = $ 0,99 per pond
Er loopt een lijn door (8, 1) en (6, 4). Een tweede regel passeert (3, 5). Wat is een ander punt dat de tweede regel kan passeren als deze parallel is aan de eerste regel?
(1,7) Dus moeten we eerst de richtingsvector vinden tussen (8,1) en (6,4) (6,4) - (8,1) = (- 2,3) We weten dat een vectorvergelijking bestaat uit een positievector en een richtingsvector. We weten dat (3,5) een positie is op de vectorvergelijking, zodat we die kunnen gebruiken als onze positievector en we weten dat deze parallel is aan de andere lijn, zodat we die richtingsvector (x, y) = (3, 4) + s (-2,3) Om een ander punt op de lijn te vinden, vervangt u gewoon elk getal in s behalve 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Dus (1,7) is nog een ander punt.
Er loopt een lijn door (4, 3) en (2, 5). Een tweede regel passeert (5, 6). Wat is een ander punt dat de tweede regel kan passeren als deze parallel is aan de eerste regel?
(3,8) Dus moeten we eerst de richtingsvector vinden tussen (2,5) en (4,3) (2,5) - (4,3) = (- 2,2) We weten dat een vectorvergelijking bestaat uit een positievector en een richtingsvector. We weten dat (5,6) een positie op de vectorvergelijking is, zodat we die als onze positievector kunnen gebruiken en we weten dat deze parallel is aan de andere lijn, zodat we die richtingsvector (x, y) = (5, 6) + s (-2,2) Om een ander punt op de lijn te vinden, vervang je gewoon elk getal in s behalve 0, dus kies 1 (x, y) = (5,6) +1 (-2,2) = (3,8) Dus (3,8) is nog een ander punt.