Antwoord:
Maat van de drie zijden zijn (2.2361, 10.7906, 10.7906)
Uitleg:
LengteGebied van
Omdat de driehoek gelijkbenig is, is de derde zijde ook
Maat van de drie zijden zijn (2.2361, 10.7906, 10.7906)
Twee hoeken van een gelijkbenige driehoek staan op (1, 2) en (1, 7). Als het gebied van de driehoek 64 is, wat zijn de lengten van de zijden van de driehoek?
"De lengte van de zijkanten is" 25,722 tot 3 decimalen "De basislengte is" 5 Let op de manier waarop ik mijn werk heb getoond. Wiskunde is deels over communicatie! Laat de Delta ABC die vertegenwoordigen in de vraag Laat de lengte van zijden AC en BC zijn s Laat de verticale hoogte zijn h Laat het gebied a zijn = 64 "eenheden" ^ 2 Laat A -> (x, y) -> ( 1,2) Laat B -> (x, y) -> (1,7) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ kleur (blauw) ("Om de lengte AB te bepalen") kleur (groen) (AB "" = "" y_2-y_1 "&
Twee hoeken van een gelijkbenige driehoek staan op (1, 2) en (3, 1). Als het gebied van de driehoek 2 is, wat zijn de lengten van de zijden van de driehoek?
Zoek de hoogte van de driehoek en gebruik Pythagoras. Begin met het oproepen van de formule voor de hoogte van een driehoek H = (2A) / B. We weten dat A = 2, dus het begin van de vraag kan worden beantwoord door de basis te vinden. De gegeven hoeken kunnen één kant produceren, die we de basis zullen noemen. De afstand tussen twee coördinaten op het XY-vlak wordt gegeven door de formule sqrt ((X1-X2) ^ 2 + (Y1-Y2) ^ 2). PlugX1 = 1, X2 = 3, Y1 = 2 en Y2 = 1 om sqrt ((- 2) ^ 2 + 1 ^ 2) of sqrt (5) te krijgen. Omdat je tijdens het werk geen radicalen hoeft te vereenvoudigen, blijkt de hoogte 4 / sqrt (5) te zijn
Twee hoeken van een gelijkbenige driehoek staan op (1, 2) en (9, 7). Als het gebied van de driehoek 64 is, wat zijn de lengten van de zijden van de driehoek?
Lengtes van de drie zijden van de Delta zijn kleur (blauw) (9.434, 14.3645, 14.3645) Lengte a = sqrt ((9-1) ^ 2 + (7-2) ^ 2) = sqrt 89 = 9.434 Oppervlakte van Delta = 4:. h = (Area) / (a / 2) = 6 4 / (9.434 / 2) = 6 4 / 4.717 = 13.5679 zijde b = sqrt ((a / 2) ^ 2 + h ^ 2) = sqrt ((4.717) ^ 2 + (13.5679) ^ 2) b = 14.3645 Omdat de driehoek gelijkbenig is, is de derde zijde ook = b = 14.3645